

Lab01:
Introduction to JAVA

Mohamed Elshaikh
Faculty of Electronics Engineering Technology – UniMAP (FTKEN-UniMAP)

Objectives
• Introduction to JAVA programming

• JAVA programming structure

• The IDE

Introduction to JAVA Programming
Java is a programming language created by James Gosling from Sun Microsystems (Sun) in 1991. The target

of Java is to write a program once and then run this program on multiple operating systems. The first publicly
available version of Java (Java 1.0) was released in 1995. Sun Microsystems was acquired by the Oracle
Corporation in 2010. Oracle has now the steermanship for Java. In 2006 Sun started to make Java available
under the GNU General Public License (GPL). Oracle continues this project called OpenJDK. Over time new
enhanced versions of Java have been released. The current version of Java is Java 1.8 which is also known as
Java 8.

i. Java is defined by a specification and consists of a programming language, a compiler, core libraries
and a runtime (Java virtual machine) The Java runtime allows software developers to write
program code in other languages than the Java programming language which still runs on the Java
virtual machine. The Java platform is usually associated with the Java virtual machine and the Java
core libraries. The Java language was designed with the following properties:

ii. Platform independent: Java programs use the Java virtual machine as abstraction and do not
access the operating system directly. This makes Java programs highly portable. A Java program
(which is standard-compliant and follows certain rules) can run unmodified on all supported
platforms, e.g., Windows or Linux.

iii. Object-orientated programming language: Except the primitive data types, all elements in Java are
objects.

iv. Strongly-typed programming language: Java is strongly-typed, e.g., the types of the used variables
must be pre-defined and conversion to other objects is relatively strict, e.g., must be done in most
cases by the programmer.

v. Interpreted and compiled language: Java source code is transferred into the bytecode format
which does not depend on the target platform. These bytecode instructions will be interpreted by
the Java Virtual machine (JVM). The JVM contains a so-called Hotspot-Compiler which translates
performance critical bytecode instructions into native code instructions.

vi. Automatic memory management: Java manages the memory allocation and de-allocation for
creating new objects. The program does not have direct access to the memory. The so-called
garbage collector automatically deletes objects to which no active pointer exists.

The Java syntax is similar to C++. Java is case-sensitive, e.g., variables called myValue and myvalue are
treated as different variables.

1. Java Virtual Machine (JVM)

The Java virtual machine (JVM) is a software implementation of a computer that executes programs like a real
machine. The Java virtual machine is written specifically for a specific operating system, e.g., for Linux a special
implementation is required as well as for Windows. Java programs are compiled by the Java compiler into
bytecode. The Java virtual machine interprets this bytecode and executes the Java program.

2. Java Runtime Environment vs. Java Development Kit

A Java distribution typically comes in two flavors, the Java Runtime Environment (JRE) and the Java
Development Kit (JDK). The JRE consists of the JVM and the Java class libraries. Those contain the necessary
functionality to start Java programs. he JDK additionally contains the development tools necessary to create Java
programs. The JDK therefore consists of a Java compiler, the Java virtual machine and the Java class libraries.

3. Development Process with Java

Java source files are written as plain text documents. The programmer typically writes Java source code in an
Integrated Development Environment (IDE) for programming. An IDE supports the programmer in the task of
writing code, e.g., it provides auto-formating of the source code, highlighting of the important keywords, etc.

At some point the programmer (or the IDE) calls the Java compiler (javac). The Java compiler creates the
bytecode instructions. These instructions are stored in .class files and can be executed by the Java Virtual Machine.

4. Garbage collector

The JVM automatically re-collects the memory which is not referred to by other objects. The Java garbage
collector checks all object references and finds the objects which can be automatically released.

While the garbage collector relieves the programmer from the need to explicitly manage memory, the
programmer still need to ensure that he does not keep unneeded object references, otherwise the garbage
collector cannot release the associated memory. Keeping unneeded object references are typically called memory
leaks.

5. Classpath

The classpath defines where the Java compiler and Java runtime look for .class files to load. These instructions
can be used in the Java program. For example, if you want to use an external Java library you have to add this
library to your classpath to use it in your program.

6. Java is a platform independent language

Compiler (javac) converts source code (.java file) to the byte code (.class file). As mentioned above, JVM
executes the bytecode produced by compiler. This byte code can run on any platform such as Windows, Linux,
Mac OS etc. Which means a program that is compiled on windows can run on Linux and vice-versa. Each operating
system has different JVM, however the output they produce after execution of bytecode is same across all
operating systems. That is why we call java as platform independent language.

Object oriented programming is a way of organizing programs as collection of objects, each of which represents
an instance of a class. 4 main concepts of Object-Oriented programming are:

1. Abstraction
2. Encapsulation
3. Inheritance
4. Polymorphism

Using java programming language, we can create distributed applications. RMI (Remote Method Invocation)
and EJB (Enterprise Java Beans) are used for creating distributed applications in java. In simple words: The java
programs can be distributed on more than one system that are connected to each other using internet connection.
Objects on one JVM (java virtual machine) can execute procedures on a remote JVM.

As discussed above, java code that is written on one machine can run on another machine. The platform
independent byte code can be carried to any platform for execution that makes java code portable.

Getting Started - Your First Java Program
Let us revisit the "Hello-world" program that prints a message "Hello, world!" to the display console.

Step 1: Write the Source Code: Enter the following source codes, which defines a class called

"Hello", using a programming text editor. Do not enter the line numbers (on the left pane), which were added

to aid in the explanation.

Save the source file as "Hello.java". A Java source file should be saved with a file extension of ".java".

The filename shall be the same as the classname - in this case "Hello". Filename and classname are case-

sensitive.

Step 2: Compile the Source Code: Compile the source code "Hello.java" into Java bytecode (or

machine code) "Hello.class" using JDK's Java Compiler "javac".

Start a CMD Shell (Windows) or Terminal (UNIX/Linux/macOS) and issue these commands:

// Change directory (cd) to the directory (folder) containing the source file "Hello.java"

javac Hello.java

Step 3: Run the Program: Run the machine code using JDK's Java Runtime "java", by issuing this

command:

java Hello

Hello, world!

/*

 * First Java program, which says hello.

 */

public class Hello { // Save as "Hello.java"

 public static void main(String[] args) { // Program entry point

 System.out.println("Hello, world!"); // Print text message

 }

}

How it Works

/* */
// ... until the end of the current line

These are called comments. Comments are NOT executable and are ignored by the compiler. But they

provide useful explanation and documentation to your readers (and to yourself three days later). There are

two kinds of comments:

1. Multi-Line Comment: begins with /* and ends with */, and may span more than one lines (as in

Lines 1-3).

2. End-of-Line (Single-Line) Comment: begins with // and lasts until the end of the current line (as

in Lines 4, 5, and 6).

public class Hello {
......
}

The basic unit of a Java program is a class. A class called "Hello" is defined via the keyword "class" in Lines

4-8. The braces {......} encloses the body of the class.

In Java, the name of the source file must be the same as the name of the class with a mandatory file

extension of ".java". Hence, this file MUST be saved as "Hello.java" - case-sensitive.

public static void main(String[] args) {

 }

Lines 5-7 defines the so-called main() method, which is the entry point for program execution. Again, the

braces {......} encloses the body of the method, which contains programming statements.

System.out.println("Hello, world!");
In Line 6, the programming statement System.out.println("Hello, world!") is used to print the string

"Hello, world!" to the display console. A string is surrounded by a pair of double quotes and contain texts.

The text will be printed as it is, without the double quotes. A programming statement ends with a semi-colon

(;).

Java Programming Steps

The steps in writing a Java program are illustrated as above:

Step 1: Write the source code "Xxx.java".

Step 2: Compile the source code "Xxx.java" into Java portable bytecode (or machine code) "Xxx.class"

using the JDK's Java compiler by issuing the command "javac Xxx.java".

Step 3: Run the compiled bytecode "Xxx.class", using the JDK's Java Runtime by issuing the command

"java Xxx".

Computer Architecture

The Central Processing Unit (CPU) is the heart of a computer, which serves as the overall controller of the
computer system. It fetches programs/data from main memory and executes the programs. It performs the
arithmetic and logical operations (such as addition and multiplication).

The Main Memory stores the programs and data for execution by the CPU. It consists of RAM (Random Access
Memory) and ROM (Read-Only Memory). RAM is volatile, which losses all its contents when the power is turned
off. ROM is non-volatile, which retains its contents when the power is turned off. ROM is read-only and its contents
cannot be changed once initialized. RAM is read-write. RAM and ROM are expensive. Hence, their amount is quite
limited.

The Secondary Memory, such as disk drives and flash sticks, is less expensive and is used

for mass and permanent storage of programs and data (including texts, images and video). However, the CPU can
only run programs from the main memory, not the secondary memory.

When the power is turned on, a small program stored in ROM is executed to fetch the essential programs

(called operating system) from the secondary memory to the main memory, in a process known as booting. Once
the operating system is loaded into the main memory, the computer is ready for use. This is, it is ready to fetch
the desired program from the secondary memory to the main memory for execution upon user's command.

The CPU can read data from the Input devices (such as keyboard or touch pad) and write data to the Output
devices (such as display or printer). It can also read/write data through the network interfaces (wired or wireless).

You job as a programmer is to write programs, to be executed by the CPU to accomplish a specific task.

Java Terminology and Syntax
► Comments: A multi-line comment begins with /* and ends with */, and may span multiple lines.

An end-of-line (single-line) comment begins with // and lasts till the end of the current line.
Comments are NOT executable statements and are ignored by the compiler. But they provide useful

explanation and documentation. I strongly suggest that you write comments liberally to explain your
thought and logic.

► Statement: A programming statement performs a single piece of programming action. It is
terminated by a semi-colon (;), just like an English sentence is ended with a period, as in Lines 6.

► Block: A block is a group of programming statements enclosed by a pair of braces {}. This group of
statements is treated as one single unit. There are two blocks in the above program. One contains

the body of the class Hello. The other contains the body of the main() method. There is no need to
put a semi-colon after the closing brace.

► Whitespaces: Blank, tab, and newline are collectively called whitespace. Extra whitespaces are
ignored, i.e., only one whitespace is needed to separate the tokens. Nonetheless, extra whitespaces
improve the readability, and I strongly suggest you use extra spaces and newlines to improve the
readability of your code.

► Case Sensitivity : Java is case sensitive - a ROSE is NOT a Rose, and is NOT a rose. The filename,
which is the same as the class name, is also case-sensitive.

Java Program Template
You can use the following template to write your Java programs. Choose a meaningful "Classname" that

reflects the purpose of your program, and write your programming statements inside the body of
the main() method. Don't worry about the other terms and keywords now. I will explain them in due course.
Provide comments in your program!

Output via System.out.println() and System.out.print()

You can use System.out.println() (print-line) or System.out.print() to print text messages to the

display console:

• System.out.println(aString) (print-line) prints aString, and advances the cursor to the

beginning of the next line.

• System.out.print(aString) prints aString but places the cursor after the printed string.

• System.out.println() without parameter prints a newline.

Try the following program and explain the output produced:

/*

 * Comment to state the purpose of the program

 */

public class Classname { // Choose a meaningful Classname. Save as

"Classname.java"

 public static void main(String[] args) { // Entry point of the program

 // Your programming statements here!!!

 }

}

Save the source code as "PrintTest.java" (which is the same as the classname). Compile and run the

program. The expected outputs are:

Exercises 1
A- using System.out.println() write 4 programs, called

a) PrintCheckerPattern
b) PrintSquarePattern
c) PrintTriangularPattern
d) PrintStarPattern

to print each of the following patterns. Use ONE System.out.println(...) (print-line) statement for EACH
LINE of outputs. Take note that you need to print the preceding blanks.

/*

 * Test System.out.println() (print-line) and System.out.print().

 */

public class PrintTest { // Save as "PrintTest.java"

 public static void main(String[] args) {

 System.out.println("Hello world!"); // Advance the cursor to the

beginning of next line after printing

 System.out.println("Hello world again!"); // Advance the cursor to the

beginning of next line after printing

 System.out.println(); // Print an empty line

 System.out.print("Hello world!"); // Cursor stayed after the

printed string

 System.out.print("Hello world again!"); // Cursor stayed after the

printed string

 System.out.println(); // Print an empty line

 System.out.print("Hello,");

 System.out.print(" "); // Print a space

 System.out.println("world!");

 System.out.println("Hello, world!");

 }

}

Hello world!

Hello world again!

Hello world!Hello world again!

Hello, world!

Hello, world!

B- Write a program called PrintSheepPattern to print the following pattern:

Let's Write a Program to Add a Few Numbers

Let us write a program to add FIVE integers and display their sum, as follows:

Save the source code as "FiveIntegerSum.java" (which is the same as the classname). Compile and run

the program. The expected output is:

The sum is 165

How It Works?

These five statements declare five int (integer) variables called number1, number2, number3, number4,

and number5; and assign values of 11, 22, 33, 44 and 55 to the variables respectively, via the so-

called assignment operator '='.

Alternatively, you could declare many variables in one statement separated by commas, e.g.,

int number1 = 11, number2 = 22, number3 = 33, number4 = 44, number5 = 55;

int sum;

declares an int (integer) variable called sum, without assigning an initial value - its value is to be computed

and assigned later.

sum = number1 + number2 + number3 + number4 + number5;

computes the sum of number1 to number5 and assign the result to the variable sum. The symbol '+'

denotes arithmetic addition, just like Mathematics.

System.out.print("The sum is ");
System.out.println(sum);

Line 13 prints a descriptive string. A String is surrounded by double quotes, and will be printed as it

is (without the double quotes). The cursor stays after the printed string. Try using println() instead

of print() and study the output.

Line 15 prints the value stored in the variable sum (in this case, the sum of the five integers). You should not

surround a variable to be printed by double quotes; otherwise, the text will get printed instead of the value

stored in the variable. The cursor advances to the beginning of next line after printing. Try

using print() instead of println() and study the output.

Exercise 2
1. Follow the above example, write a program called SixIntegerSum which includes a new variable

called number6 with a value of 66 and prints their sum.

2. Follow the above example, write a program called SevenIntegerSum which includes a new

variable called number7 with a value of 77 and prints their sum.

3. Follow the above example, write a program called FiveIntegerProduct to print the product of

5 integers. You should use a variable called product (instead of sum) to hold the product. Use

symbol * for multiplication.

What is a Program
A program is a sequence of instructions (called programming statements), executing one after another in

a predictable manner.

Sequential flow is the most common and straight-forward, where programming statements are executed in

the order that they are written - from top to bottom in a sequential manner, as illustrated in the following flow
chart.

Example

The following program prints the area and circumference of a circle, given its radius. Take note that the
programming statements are executed sequentially - one after another in the order that they were written.

In this example, we use "double" which hold floating-point number (or real number with an optional fractional

part) instead of "int" which holds integer.

The expected outputs are:

The radius is 1.2

The area is 4.523893416

The circumference is 7.5398223600000005

/*

 * Print the area and circumference of a circle, given its radius.

 */

public class CircleComputation { // Save as "CircleComputation.java"

 public static void main(String[] args) {

 // Declare 3 double variables to hold radius, area and circumference.

 // A "double" holds floating-point number with an optional fractional

part.

 double radius, area, circumference;

 // Declare a double to hold PI.

 // Declare as "final" to specify that its value cannot be changed (i.e.

constant).

 final double PI = 3.14159265;

 // Assign a value to radius. (We shall read in the value from the keyboard

later.)

 radius = 1.2;

 // Compute area and circumference

 area = radius * radius * PI;

 circumference = 2.0 * radius * PI;

 // Print results

 System.out.print("The radius is "); // Print description

 System.out.println(radius); // Print the value stored in the

variable

 System.out.print("The area is ");

 System.out.println(area);

 System.out.print("The circumference is ");

 System.out.println(circumference);

 }

}

How It Works?

double radius, area, circumference;

declare three double variables radius, area and circumference. A double variable can hold a real number

or floating-point number with an optional fractional part. (In the previous example, we use int, which holds

integer.)

final double PI = 3.14159265;

declare a double variable called PI and assign a value. PI is declared final to specify that its value cannot

be changed, i.e., a constant.

radius = 1.2;

assigns a value (real number) to the double variable radius.

area = radius * radius * PI;
circumference = 2.0 * radius * PI;

compute the area and circumference, based on the value of radius and PI.

System.out.print("The radius is ");
System.out.println(radius);

 System.out.print("The area is ");
System.out.println(area);

 System.out.print("The circumference is ");
System.out.println(circumference);

print the results with proper descriptions.

Take note that the programming statements inside the main() method are executed one after another, in

a sequential manner.

Exercises 3
1. Follow the above example, write a program called RectangleComputation to print the area and

perimeter of a rectangle, given its length and width (in doubles). You should use

4 double variables called length, width, area and perimeter.

2. Follow the above example, write a program called CylinderComputation to print the surface

area, base area, and volume of a cylinder, given its radius and height (in doubles). You should

use 5 double variables called radius, height, surfaceArea, baseArea and volume. Take note

that space (blank) is not allowed in variable names.

What is a Variable

A computer program manipulates (or processes) data. A variable is a storage location (like a house, a pigeon
hole, a letter box) that stores a piece of data for processing. It is called variable because you can change the value
stored inside. More precisely, a variable is a named storage location, that stores a value of a particular data type.
In other words, a variable has a name, a type and stores a value of that particular type.

A variable has a name (aka identifier), e.g., radius, area, age, height, numStudnets. The name is needed to

uniquely identify each variable, so as to assign a value to the variable (e.g., radius = 1.2), as well as to retrieve

the value stored (e.g., radius * radius * 3.14159265). A variable has a type. Examples of type are:

• int: meant for integers (or whole numbers or fixed-point numbers) including zero, positive and

negative integers, such as 123, -456, and 0;

• double: meant for floating-point numbers or real numbers, such as 3.1416, -55.66, having an

optional decimal point and fractional part.

• String: meant for texts such as "Hello", "Good Morning!". Strings shall be enclosed with a pair of

double quotes.

A variable can store a value of the declared type. It is important to take note that a variable in most

programming languages is associated with a type, and can only store value of that particular type. For example,

an int variable can store an integer value such as 123, but NOT a real number such as 12.34, nor texts such as

"Hello". The concept of type was introduced into the early programming languages to simplify interpretation

of data. The following diagram illustrates three types of variables: int, double and String. An int variable stores

an integer (whole number); a double variable stores a real number (which includes integer as a special form of

real number); a String variable stores texts.

Basic Arithmetic Operations

The basic arithmetic operations are:

Addition, subtraction, multiplication, division and remainder are binary operators that take two operands

(e.g., x + y); while negation (e.g., -x), increment and decrement (e.g., ++x, --y) are unary operators that take

only one operand.

Example

The following program illustrates these arithmetic operations:

/*

 * Test Arithmetic Operations

 */

public class ArithmeticTest { // Save as "ArithmeticTest.java"

 public static void main(String[] args) {

 int number1 = 98; // Declare an int variable number1 and initialize it to

98

 int number2 = 5; // Declare an int variable number2 and initialize it to

5

 int sum, difference, product, quotient, remainder; // Declare 5 int

variables to hold results

 // Perform arithmetic Operations

 sum = number1 + number2;

 difference = number1 - number2;

 product = number1 * number2;

 quotient = number1 / number2;

 remainder = number1 % number2;

 // Print results

 System.out.print("The sum, difference, product, quotient and remainder of

"); // Print description

 System.out.print(number1); // Print the value of the variable

 System.out.print(" and ");

 System.out.print(number2);

 System.out.print(" are ");

 System.out.print(sum);

 System.out.print(", ");

 System.out.print(difference);

 System.out.print(", ");

 System.out.print(product);

 System.out.print(", ");

 System.out.print(quotient);

 System.out.print(", and ");

 System.out.println(remainder);

 ++number1; // Increment the value stored in the variable "number1" by 1

 // Same as "number1 = number1 + 1"

 --number2; // Decrement the value stored in the variable "number2" by 1

 // Same as "number2 = number2 - 1"

 System.out.println("number1 after increment is " + number1); // Print

description and variable

 System.out.println("number2 after decrement is " + number2);

 quotient = number1 / number2;

 System.out.println("The new quotient of " + number1 + " and " + number2

The expected outputs are:

How It Works?

int number1 = 98;
int number2 = 5;
int sum, difference, product, quotient, remainder;

declare all the variables number1, number2, sum, difference, product, quotient and remainder needed in
this program. All variables are of the type int (integer).

sum = number1 + number2;
difference = number1 - number2;
product = number1 * number2;
quotient = number1 / number2;
remainder = number1 % number2;

carry out the arithmetic operations on number1 and number2. Take note that division of two integers produces

a truncated integer, e.g., 98/5 → 19, 99/4 → 24, and 1/2 → 0.

System.out.print("The sum, difference, product, quotient and remainder of ");

......
prints the results of the arithmetic operations, with the appropriate string descriptions in between. Take

note that text strings are enclosed within double-quotes, and will get printed as they are, including the

white spaces but without the double quotes. To print the value stored in a variable, no double quotes should

be used. For example,

System.out.println("sum"); // Print text string "sum" - as it is
System.out.println(sum); // Print the value stored in variable sum, e.g., 98

 ++number1;
 --number2;

illustrate the increment and decrement operations. Unlike '+', '-', '*', '/' and '%', which work on two

operands (binary operators), '++' and '--' operate on only one operand (unary operators). ++x is equivalent

to x = x + 1, i.e., increment x by 1.

System.out.println("number1 after increment is " + number1);
 System.out.println("number2 after decrement is " + number2);

print the new values stored after the increment/decrement operations. Take note that instead of using

many print() statements as in Lines 18-31, we could simply place all the items (text strings and variables)

into one println(), with the items separated by '+'. In this case, '+' does not perform addition. Instead,

it concatenates or joins all the items together.

Exercises 4
1. Combining Lines 18-31 into one single println() statement, using '+' to concatenate all the

items together.

2. In Mathematics, we could omit the multiplication sign in an arithmetic expression, e.g., x = 5a

+ 4b. In programming, you need to explicitly provide all the operators, i.e., x = 5*a + 4*b. Try

printing the sum of 31 times of number1 and 17 times of number2.

3. Based on the above example, write a program called SumProduct3Numbers, which introduces

one more int variable called number3, and assign it an integer value of 77. Compute and print

the sum and product of all the three numbers.

Loop
Suppose that you want to add all the integers from 1 to 1000. If you follow the previous example, you would

require a thousand-line program! Instead, you could use a so-called loop in your program to perform

a repetitive task, that is what the computer is good at.

Example

Try the following program, which sums all the integers from a lowerbound (=1) to an upperbound (=1000) using

a so-called while-loop.

The expected output is:

The sum from 1 to 1000 is 500500

How It Works?

final int LOWERBOUND = 1;
final int UPPERBOUND = 1000;
declare two int constants to hold the upperbound and lowerbound, respectively.

int sum = 0;
declares an int variable to hold the sum. This variable will be used to accumulate over the steps in the

repetitive loop, and thus initialized to 0.

/*

 * Sum from a lowerbound to an upperbound using a while-loop

 */

public class RunningNumberSum { // Save as "RunningNumberSum.java"

 public static void main(String[] args) {

 final int LOWERBOUND = 1; // Store the lowerbound

 final int UPPERBOUND = 1000; // Store the upperbound

 int sum = 0; // Declare an int variable "sum" to accumulate the numbers

 // Set the initial sum to 0

 // Use a while-loop to repeatedly sum from the lowerbound to the upperbound

 int number = LOWERBOUND;

 while (number <= UPPERBOUND) {

 // number = LOWERBOUND, LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND

for each iteration

 sum = sum + number; // Accumulate number into sum

 ++number; // increment number

 }

 // Print the result

 System.out.println("The sum from " + LOWERBOUND + " to " + UPPERBOUND + "

is " + sum);

 }

}

int number = LOWERBOUND;
while (number <= UPPERBOUND) {
 sum = sum + number;
 ++number;
}

This is the so-called while-loop. A while-loop takes the following syntax:

initialization-statement;
while (test) {
 loop-body;
}
next-statement;

As illustrated in the flow chart, the initialization statement is first executed. The test is then checked. If test is

true, the body is executed. The test is checked again and the process repeats until the test is false. When the test is

false, the loop completes and program execution continues to the next statement after the loop.

In our example, the initialization statement declares an int variable named number and initializes it

to LOWERBOUND. The test checks if number is equal to or less than the UPPERBOUND. If it is true, the current value

of number is added into the sum, and the statement ++number increases the value of number by 1. The test is then

checked again and the process repeats until the test is false (i.e., number increases to UPPERBOUND+1), which
causes the loop to terminate. Execution then continues to the next statement (in Line 18).

A loop is typically controlled by an index variable. In this example, the index variable number takes the
value LOWERBOUND, LOWERBOUND+1, LOWERBOUND+2,, UPPERBOUND, for each iteration of the loop.

In this example, the loop repeats UPPERBOUND-LOWERBOUND+1 times. After the loop is completed, Line 18 prints
the result with a proper description.

System.out.println("The sum from " + LOWERBOUND + " to " + UPPERBOUND + " is "
+ sum);

prints the results.

Exercises 5
1. Modify the above program (called RunningNumberSum1) to sum all the numbers from 9 to 899.

(Ans: 404514)

2. Modify the above program (called RunningNumberOddSum) to sum all the odd numbers

between 1 to 1000. (Hint: Change the post-processing statement to "number = number +

2". Ans: 250000)

3. Modify the above program (called RunningNumberMod7Sum) to sum all the numbers

between 1 to 1000 that are divisible by 7. (Hint: Modify the initialization statement to begin from

7 and post-processing statement to increment by 7. Ans: 71071)

4. Modify the above program (called RunningNumberSquareSum) to find the sum of the square of

all the numbers from 1 to 100, i.e. 1*1 + 2*2 + 3*3 +... (Hint: Modify the sum = sum +

number statement. Ans: 338350)

5. Modify the above program (called RunningNumberProduct) to compute the product of all the

numbers from 1 to 10. (Hint: Use a variable called product instead of sum and

initialize product to 1. Modify the sum = sum + number statement to do multiplication on

variable product. Ans: 3628800)

Conditional (or Decision)

What if you want to sum all the odd numbers and also all the even numbers between 1 and 1000? You could

declare two variables, sumOdd and sumEven, to keep the two sums. You can then use a conditional statement to
check whether the number is odd or even, and accumulate the number into the respective sums. The program is
as follows:

The expected outputs are:

The sum of odd numbers from 1 to 1000 is 250000
The sum of even numbers from 1 to 1000 is 250500
The difference between the two sums is -500

How It Works?

final int LOWERBOUND = 1;
final int UPPERBOUND = 1000;
declares and initializes the upperbound and lowerbound constants.

int sumOdd = 0;
int sumEven = 0;

/*

 * Sum the odd numbers and the even numbers from a lowerbound to an upperbound

 */

public class OddEvenSum { // Save as "OddEvenSum.java"

 public static void main(String[] args) {

 final int LOWERBOUND = 1;

 final int UPPERBOUND = 1000;

 int sumOdd = 0; // For accumulating odd numbers, init to 0

 int sumEven = 0; // For accumulating even numbers, init to 0

 int number = LOWERBOUND;

 while (number <= UPPERBOUND) {

 // number = LOWERBOUND, LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND

for each iteration

 if (number % 2 == 0) { // Even

 sumEven += number; // Same as sumEven = sumEven + number

 } else { // Odd

 sumOdd += number; // Same as sumOdd = sumOdd + number

 }

 ++number; // Next number

 }

 // Print the result

 System.out.println("The sum of odd numbers from " + LOWERBOUND + " to " +

UPPERBOUND + " is " + sumOdd);

 System.out.println("The sum of even numbers from " + LOWERBOUND + " to "

+ UPPERBOUND + " is " + sumEven);

 System.out.println("The difference between the two sums is " + (sumOdd -

sumEven));

 }

}

declare two int variables named sumOdd and sumEven and initialize them to 0, for accumulating the odd

and even numbers, respectively.

if (number % 2 == 0) {
 sumEven += number;
} else {
 sumOdd += number;
}
This is a conditional statement. The conditional statement can take one these forms: if-then or if-then-else.

For a if-then statement, the true-body is executed if the test is true. Otherwise, nothing is done and the

execution continues to the next statement. For a if-then-else statement, the true-body is executed if the test is

true; otherwise, the false-body is executed. Execution is then continued to the next statement.

In our program, we use the remainder or modulus operator (%) to compute the remainder of number divides
by 2. We then compare the remainder with 0 to test for even number.

Furthermore, sumEven += number is a shorthand for sumEven = sumEven + number.

Comparison Operators
There are six comparison (or relational) operators:

Take note that the comparison operator for equality is a double-equal sign (==); whereas a single-equal

sign (=) is the assignment operator.

Combining Simple Conditions

Suppose that you want to check whether a number x is between 1 and 100 (inclusive), i.e., 1 <= x <= 100.

There are two simple conditions here, (x >= 1) AND (x <= 100). In Java, you cannot write 1 <= x <= 100, but
need to write (x >= 1) && (x <= 100), where "&&" denotes the "AND" operator. Similarly, suppose that you

want to check whether a number x is divisible by 2 OR by 3, you have to write (x % 2 == 0) || (x % 3 ==
0) where "||" denotes the "OR" operator.

There are three so-called logical operators that operate on the boolean conditions:

// if-then

if (test) {

 true-body;

}

// if-then-else

if (test) {

 true-body;

} else {

 false-body;

}

For examples:

Exercises 6
1. Write a program called ThreeFiveSevenSum to sum all the running integers from 1 and 1000,

that are divisible by 3, 5 or 7, but NOT by 15, 21, 35 or 105.

2. Write a program called PrintLeapYears to print all the leap years between AD999 and AD2010.

Also print the total number of leap years. (Hints: use a int variable called count, which is

initialized to zero. Increment the count whenever a leap year is found.)

// Return true if x is between 0 and 100 (inclusive)

(x >= 0) && (x <= 100) // AND (&&)

// Incorrect to use 0 <= x <= 100

// Return true if x is outside 0 and 100 (inclusive)

(x < 0) || (x > 100) // OR (||)

!((x >= 0) && (x <= 100)) // NOT (!), AND (&&)

// Return true if "year" is a leap year

// A year is a leap year if it is divisible by 4 but not by 100, or it is divisible

by 400.

((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0)

