

Lab module 2:
Streams

Mohamed Elshaikh
Faculty of Electronics Engineering Technology – UniMAP (FTKEN-UniMAP)

Objectives
• Utilize FileInputStream class which is InputStream type and FileOutputStream class which is

OutputStream type to read from and write to a file.

• Use FileReaderclass which is Reader type and FileWriter class which is Writer type to read from and
write to a file.

Introduction
Programs read inputs from data sources (e.g., keyboard, file, network, memory buffer, or another program)

and write outputs to data sinks (e.g., display console, file, network, memory buffer, or another program). In Java
standard I/O, inputs and outputs are handled by the so-called streams. A stream is a sequential and contiguous
one-way flow of data (just like water or oil flows through the pipe). It is important to mention that Java does not
differentiate between the various types of data sources or sinks (e.g., file or network) in stream I/O. They are all
treated as a sequential flow of data. Input and output streams can be established from/to any data source/sink,
such as files, network, keyboard/console or another program. The Java program receives data from a source by
opening an input stream, and sends data to a sink by opening an output stream. All Java I/O streams are one-way
(except the RandomAccessFile, which will be discussed later). If your program needs to perform both input and
output, you have to open two streams - an input stream and an output stream.

Stream I/O operations involve three steps:

1. Open an input/output stream associated with a physical device (e.g., file, network, console/keyboard),
by constructing an appropriate I/O stream instance.

2. Read from the opened input stream until "end-of-stream" encountered, or write to the opened output
stream (and optionally flush the buffered output).

3. Close the input/output stream.

Java's I/O operations is more complicated than C/C++ to support internationalization (i18n). Java internally
stores characters (char type) in 16-bit UCS-2 character set. But the external data source/sink could store
characters in other character set (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, and many others), in fixed length of
8-bit or 16-bit, or in variable length of 1 to 4 bytes. As a consequence, Java needs to differentiate between byte-
based I/O for processing raw bytes or binary data, and character-based I/O for processing texts made up of
characters.

a) Reading from an InputStream

The abstract superclass InputStream declares an abstract method read() to read one data-byte from the
input source:

The read() method:

• returns the input byte read as an int in the range of 0 to 255, or

• returns -1 if "end of stream" condition is detected, or

• throws an IOException if it encounters an I/O error.

The read() method returns an int instead of a byte, because it uses -1 to indicate end-of-stream.

The read() method blocks until a byte is available, an I/O error occurs, or the "end-of-stream" is detected. The
term "block" means that the method (and the program) will be suspended. The program will resume only when
the method returns.

Two variations of read() methods are implemented in the InputStream for reading a block of bytes into a
byte-array. It returns the number of bytes read, or -1 if "end-of-stream" encounters.

b) Writing to an OutputStream

Similar to the input counterpart, the abstract superclass OutputStream declares an abstract
method write() to write a data-byte to the output sink. write() takes an int. The least-significant byte of
the int argument is written out; the upper 3 bytes are discarded. It throws an IOException if I/O error occurs
(e.g., output stream has been closed).

Similar to the read(), two variations of the write() method to write a block of bytes from a byte-array are

implemented:

c) Opening & Closing I/O Streams

You open an I/O stream by constructing an instance of the stream. Both the InputStream and

the OutputStream provides a close() method to close the stream, which performs the necessary clean-up

operations to free up the system resources.

It is a good practice to explicitly close the I/O stream, by running close() in the finally clause of try-

catch-finally to free up the system resources immediately when the stream is no longer needed. This could

prevent serious resource leaks. Unfortunately, the close() method also throws a IOException, and needs to

be enclosed in a nested try-catch statement, as follows. This makes the codes somehow ugly.

JDK 1.7 introduces a new try-with-resources syntax, which automatically closes all the opened resources after
try or catch, as follows. This produces much neater codes.

d) Flushing the OutputStream

In addition, the OutputStream provides a flush() method to flush the remaining bytes from the output
buffer.

e) Implementations of abstract InputStream/OutputStream

InputStream and OutputStream are abstract classes that cannot be instantiated. You need to choose an

appropriate concrete subclass to establish a connection to a physical device. For example, you can instantiate

a FileInputStream or FileOutputStream to establish a stream to a physical disk file.

f) Layered (or Chained) I/O Streams

The I/O streams are often layered or chained with other I/O streams, for purposes such as buffering,

filtering, or data-format conversion (between raw bytes and primitive types). For example, we can layer

a BufferedInputStream to a FileInputStream for buffered input, and stack a DataInputStream in front for

formatted data input (using primitives such as int, double), as illustrated in the following diagrams.

File I/O Byte-Streams
FileInputStream and FileOutputStream are concrete implementations to the abstract classes InputStream and

OutputStream, to support I/O from disk files.

1. Buffered I/O Byte-Streams

The read()/write() method in InputStream/OutputStream are designed to read/write a single byte of data on
each call. This is grossly inefficient, as each call is handled by the underlying operating system (which may trigger
a disk access, or other expensive operations). Buffering, which reads/writes a block of bytes from the external
device into/from a memory buffer in a single I/O operation, is commonly applied to speed up the I/O.

FileInputStream/FileOutputStream is not buffered. It is often chained to a BufferedInputStream or
BufferedOutputStream, which provides the buffering. To chain the streams together, simply pass an instance of
one stream into the constructor of another stream. For example, the following codes chain a FileInputStream to
a BufferedInputStream, and finally, a DataInputStream:

Example 1

 Copying a file byte-by-byte without Buffering.

Output

This example copies a file by reading a byte from the input file and writing it to the output file. It uses
FileInputStream and FileOutputStream directly without buffering. Notice that most the I/O methods "throws"
IOException, which must be caught or declared to be thrown. The method close() is programmed inside the finally
clause. It is guaranteed to be run after try or catch. However, method close() also throws an IOException, and
therefore must be enclosed inside a nested try-catch block, which makes the codes a little ugly.

I used System.nanoTime(), which was introduced in JDK 1.5, for a more accurate measure of the elapsed time,
instead of the legacy not-so-precise System.currentTimeMillis(). The output shows that it took about 4 seconds to
copy a 400KB file.

As mentioned, JDK 1.7 introduces a new try-with-resources syntax, which automatically closes all the resources
opened, after try or catch. For example, the above example can be re-written in a much neater manner as follow:

Example 2

Copying a file with a Programmer-Managed Buffer.

Output

This example again uses FileInputStream and FileOutputStream directly. However, instead of
reading/writing one byte at a time, it reads/writes a 4KB block. This program took only 3 millisecond - a more than
1000 times speed-up compared with the previous example.

Larger buffer size, up to a certain limit, generally improves the I/O performance. However, there is a trade-off
between speed-up the the memory usage. For file copying, a large buffer is certainly recommended. But for
reading just a few bytes from a file, large buffer simply wastes the memory.

I re-write the program using JDK 1.7, and try on various buffer size on a much bigger file of 26MB.

Output

Increasing buffer size helps only up to a certain point?!

Example 3
Copying a file with Buffered Streams.

Output

1. File I/O Character-Streams

FileReader and FileWriter are concrete implementations to
the abstract superclasses Reader and Writer, to support I/O from disk

files. FileReader/FileWriter assumes that the default character encoding (charset) is used for the disk file.
The default charset is kept in the JVM's system property "file.encoding". You can get the default charset
via static method java.nio.charset.Charset.defaultCharset() or System.getProperty("file.enc
oding"). It is probable safe to use FileReader/FileWriter for ASCII texts, provided that the default charset is
compatible to ASCII (such as US-ASCII, ISO-8859-x, UTF-8, and many others, but NOT UTF-16, UTF-16BE, UTF-16LE
and many others). Use of FileReader/FileWriter is NOT recommended as you have no control of the file
encoding charset.

2. Buffered I/O Character-Streams

BufferedReader and BufferedWriter can be stacked on top of FileReader/FileWriter or other
character streams to perform buffered I/O, instead of character-by-character. BufferedReader provides a new
method readLine(), which reads a line and returns a String (without the line delimiter). Lines could be
delimited by "\n" (Unix), "\r\n" (Windows), or "\r" (Mac).

Example 4

3. Character Set (or Charset)

JDK 1.4 provides a new package java.nio.charset as part of NIO (New IO) to support character translation
between the Unicode (UCS-2) used internally in Java program and external devices which could be encoded in any
other format (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, UTF-16BE, UTF-16LE, and etc.)

The main class java.nio.charset.Charset provides static methods for testing whether a particular
charset is supported, locating charset instances by name, and listing all the available charsets and the default
charset.

Example 5

The default charset for file encoding is kept in the system property "file.encoding". To change the JVM's
default charset for file encoding, you can use command-line VM option "-Dfile.encoding". For example, the
following command run the program with default charset of UTF-8.

Most importantly, the Charset class provides methods to encode/decode characters from UCS-2 used in Java
program and the specific charset used in the external devices (such as UTF-8).

The encode()/decode() methods operate on ByteBuffer and CharBuffer introduced also in JDK 1.4, which
will be explain in the New I/O section.

Example 6
The following example encodes some Unicode texts in various encoding scheme, and display the Hex codes of

the encoded byte sequences.

Output

Example 7

The following example tries out the encoding/decoding on CharBuffer and ByteBuffer. Buffers will be
discussed later under New I/O.

Output

4. Text File I/O

As mentioned, Java internally stores characters (char type) in 16-bit UCS-2 character set. But the external data
source/sink could store characters in other character set (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, and many
others), in fixed length of 8-bit or 16-bit, or in variable length of 1 to 4 bytes.
The FileReader/FileWriter introduced earlier uses the default charset for decoding/encoding, resulted in non-
portable programs.

To choose the charset, you need to use InputStreamReader and OutputStreamWriter.
InputStreamReader and OutputStreamWriter are considered to be byte-to-character "bridge" streams. You can
choose the character set in the InputStreamReader's constructor:

You can list the available charsets via static method java.nio.charset.Charset.availableCharsets().
The commonly-used Charset names supported by Java are:

• "US-ASCII": 7-bit ASCII (aka ISO646-US)

• "ISO-8859-1": Latin-1

• "UTF-8": Most commonly-used encoding scheme for Unicode

• "UTF-16BE": Big-endian (big byte first) (big-endian is usually the default)

• "UTF-16LE": Little-endian (little byte first)

• "UTF-16": with a 2-byte BOM (Byte-Order-Mark) to specify the byte order. FE FF indicates big-

endian, FF FE indicates little-endian.

As the InputStreamReader/OutputStreamWriter often needs to read/write in multiple bytes, it is best to
wrap it with a BufferedReader/BufferedWriter.

Example 8

The following program writes Unicode texts to a disk file using various charsets for file encoding. It then reads
the file byte-by-byte (via a byte-based input stream) to check the encoded characters in the various charsets.
Finally, it reads the file using the character-based reader.

import java.io.*;

// Write texts to file using OutputStreamWriter specifying its charset encoding.

// Read byte-by-byte using FileInputStream.

// Read char-by-char using InputStreamReader specifying its charset encoding.

public class TextFileEncodingJDK7 {

 public static void main(String[] args) {

 String message = "Hi,您好!"; // with non-ASCII chars

 // Java internally stores char in UCS-2/UTF-16

 // Print the characters stored with Hex codes

 for (int i = 0; i < message.length(); ++i) {

 char aChar = message.charAt(i);

 System.out.printf("[%d]'%c'(%04X) ", (i+1), aChar, (int)aChar);

 }

 System.out.println();

 // Try these charsets for encoding text file

 String[] csStrs = {"UTF-8", "UTF-16BE", "UTF-16LE", "UTF-16", "GB2312", "GBK", "BIG5"};

 String outFileExt = "-out.txt"; // Output filenames are "charset-out.txt"

 // Write text file in the specified file encoding charset

 for (int i = 0; i < csStrs.length; ++i) {

 try (OutputStreamWriter out =

 new OutputStreamWriter(

 new FileOutputStream(csStrs[i] + outFileExt), csStrs[i]);

 BufferedWriter bufOut = new BufferedWriter(out)) { // Buffered for efficiency

 System.out.println(out.getEncoding()); // Print file encoding charset

 bufOut.write(message);

 bufOut.flush();

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 // Read raw bytes from various encoded files

 // to check how the characters were encoded.

 for (int i = 0; i < csStrs.length; ++i) {

 try (BufferedInputStream in = new BufferedInputStream(// Buffered for efficiency

 new FileInputStream(csStrs[i] + outFileExt))) {

 System.out.printf("%10s", csStrs[i]); // Print file encoding charset

 int inByte;

 while ((inByte = in.read()) != -1) {

 System.out.printf("%02X ", inByte); // Print Hex codes

 }

 System.out.println();

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 // Read text file with character-stream specifying its encoding.

 // The char will be translated from its file encoding charset to

 // Java internal UCS-2.

 for (int i = 0; i < csStrs.length; ++i) {

 try (InputStreamReader in =

 new InputStreamReader(

 new FileInputStream(csStrs[i] + outFileExt), csStrs[i]);

 BufferedReader bufIn = new BufferedReader(in)) { // Buffered for efficiency

 System.out.println(in.getEncoding()); // print file encoding charset

 int inChar;

 int count = 0;

 while ((inChar = in.read()) != -1) {

 ++count;

 System.out.printf("[%d]'%c'(%04X) ", count, (char)inChar, inChar);

 }

 System.out.println();

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 }

}

Output

As seen from the output, the characters 您好 is encoded differently in different charsets. Nonetheless,
the InputStreamReader is able to translate the characters into the same UCS-2 used in Java program.

TASK: Byte Stream
Write an application that uses FileInputStream and FileOutputStream:

1. Create a new NetBeans project
a. Select File->New Project (Ctrl+Shift+N).
b. Under Choose Project pane, select Java under Categories and Java Application under Projects.
c. Click Next.
d. Under Name and Location pane, for the Project Name field, type in FileInputOutputStream as

project name. (Your Project Location may differ from the figure below).
e. For Create Main Class field, type in FileInputOutputStream.
f. Click Finish.

2. Provide farrago.txt as an input file. You may create this text file using any text editor program such as
Notepad or using Netbeans IDE as follows:

a. Right click FileInputOutputStream project and select New->Other.

b. Choose Other under Categories and Empty File under File Types. Click Next.

c. Observe that the New Empty File dialog box appears.
d. For the File Name field, type in farrago.txt. Click Finish.

e. Observe that the empty farrago.txt appears in the editor window. Write the contents below
to the empty file:

Subclasses of OutputStream use these methods to write data onto
particular media.

For instance, a FileOutputStream uses these methods to write data into a
file.

TelnetOutputStream uses these methods to write data onto a network
connection.

ByteArrayOutputStream uses these methods to write data into an
expandable byte array.

3. Modify the IDE generated FileInputOutputStream.java as shown below.

4. Build and run the project and observe the result in the Output window. Explain why do you get such
output?

5. Open the project directory and find the file outagain.txt. What is the content of the file?

6. Re-read the codes that you have written previously in FileInputOutputStream.java and
write a line of //comment at the end of each line to explain what that particular line of
codes does to the program.

7. Modify the codes so that it can display proper characters into the Output window.

8. Modify the codes to include a try-catch block.

import java.io.*;

public class FileInputOutputStream {

 public static void main(String[] args) throws IOException {

 File inputFile = new File("farrago.txt");

 File outputFile = new File("outagain.txt");

 FileInputStream in = new FileInputStream(inputFile);

 FileOutputStream out = new FileOutputStream(outputFile);

 int c;

 while ((c = in.read()) != -1){

 System.out.println(c);

 out.write(c);

 }

 System.out.println("FileInputStream is used to read a file and

FileOutPutStream is used for writing.");

 in.close();

 out.close();

 }

}

