@ UNIVERSITI
. MALAYSIA

U MAP PERLIS

* NMK30703: Programming for
' ' Networks

Lab module 2:
Streams

Mohamed Elshaikh
Faculty of Electronics Engineering Technology — UniMAP (FTKEN-UniMAP)

Objectives

e Utilize FilelnputStream class which is InputStream type and FileOutputStream class which is
OutputStream type to read from and write to a file.

e Use FileReaderclass which is Reader type and FileWriter class which is Writer type to read from and
write to a file.

Introduction

Programs read inputs from data sources (e.g., keyboard, file, network, memory buffer, or another program)
and write outputs to data sinks (e.g., display console, file, network, memory buffer, or another program). In Java
standard 1/0O, inputs and outputs are handled by the so-called streams. A stream is a sequential and contiguous
one-way flow of data (just like water or oil flows through the pipe). It is important to mention that Java does not
differentiate between the various types of data sources or sinks (e.g., file or network) in stream 1/O. They are all
treated as a sequential flow of data. Input and output streams can be established from/to any data source/sink,
such as files, network, keyboard/console or another program. The Java program receives data from a source by
opening an input stream, and sends data to a sink by opening an output stream. All Java |I/O streams are one-way
(except the RandomAccessFile, which will be discussed later). If your program needs to perform both input and
output, you have to open two streams - an input stream and an output stream.

Stream I/O operations involve three steps:

1. Open an input/output stream associated with a physical device (e.g., file, network, console/keyboard),
by constructing an appropriate 1/O stream instance.

2. Read from the opened input stream until "end-of-stream" encountered, or write to the opened output
stream (and optionally flush the buffered output).

3. Close the input/output stream.

Java's I/O operations is more complicated than C/C++ to support internationalization (i18n). Java internally
stores characters (char type) in 16-bit UCS-2 character set. But the external data source/sink could store
characters in other character set (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, and many others), in fixed length of
8-bit or 16-bit, or in variable length of 1 to 4 bytes. As a consequence, Java needs to differentiate between byte-
based 1/O for processing raw bytes or binary data, and character-based |/O for processing texts made up of
characters.

Java Program 5 Input Source
“Character” Streams char ‘.—J ——— (keyboard, file,
(Reader/Writer) -~ (16-bit) Input Stream | PETWOT peo i)
\,________.___.J
“Byte” Streams Byte ' Output Sink
(InputStream/ (8-bit) 1 —) (console, file,
QuiputStremy Output Stream = network, program)
\.‘__________._,J
Internal Data Formats: External Data Formats:
= Text(char): UCS-2 = Textin various encodings
= int, float, double, (US-ASCII, 1S0-8859-1, UCS-2, UTF-8,
etc. UTF-16, UTF-16BE, UTF16-LE, etc.)

= Binary (raw bytes)

a) Reading from an InputStream

The abstract superclass InputStream declares an abstract method read() to read one data-byte from the
input source:

public abstract int read() throws IOException

The read() method:

e returns the input byte read as an int in the range of 0 to 255, or
e returns -1 if "end of stream" condition is detected, or
e throws an IOException if it encounters an I/O error.

The read() method returns an int instead of a byte, because it uses -1 to indicate end-of-stream.

The read() method blocks until a byte is available, an 1/0 error occurs, or the "end-of-stream" is detected. The
term "block" means that the method (and the program) will be suspended. The program will resume only when
the method returns.

Two variations of read() methods are implemented in the InputStream for reading a block of bytes into a
byte-array. It returns the number of bytes read, or -1 if "end-of-stream" encounters.

public int read(byte[] bytes, int offset, int length) throws IOException

// Read "length" number of bytes, store in bytes array starting from offset of index.
public int read(byte[] bytes) throws IOException

// Same as read(bytes, 0, bytes.length)

b) Writing to an OutputStream
Similar to the input counterpart, the abstract superclassOutputStreamdeclares an abstract
method write() to write a data-byte to the output sink. write() takes an int. The least-significant byte of
the int argument is written out; the upper 3 bytes are discarded. It throws an IOException if I/O error occurs
(e.g., output stream has been closed).

public void abstract void write(int unsignedByte) throws IOException

Similar to the read(), two variations of the write() method to write a block of bytes from a byte-array are
implemented:
public void write(byte[] bytes, int offset, int length) throws IOException
// Write "length" number of bytes, from the bytes array starting from offset of index.
public void write(byte[] bytes) throws IOException
// Same as write(bytes, 0, bytes.length)
¢) Opening & Closing I/O Streams
You open an /O stream by constructing an instance of the stream. Both the InputStreamand
the OutputStream provides a close() method to close the stream, which performs the necessary clean-up
operations to free up the system resources.

public void close() throws IOException // close this Stream

It is a good practice to explicitly close the I/O stream, by running close() in the finally clause of try-
catch-finally to free up the system resources immediately when the stream is no longer needed. This could
prevent serious resource leaks. Unfortunately, the close() method also throws a IOException, and needs to
be enclosed in a nested try-catch statement, as follows. This makes the codes somehow ugly.

FileInputStream in = null;

try {
in = new FileInputStream(...); // Open stream

} catch (IOException ex) {
ex.printStackTrace();
} finally { // always close the I/O streams
try {
if (in != null) in.close();
} catch (IOException ex) {
ex.printStackTrace();

JDK 1.7 introduces a new try-with-resources syntax, which automatically closes all the opened resources after
try or catch, as follows. This produces much neater codes.

try (FileInputStream in = new FileInputStream(...)) {

} catch (IOException ex) {
ex.printStackTrace();
} // Automatically closes all opened resource in try (...).

d) Flushing the OutputStream

In addition, the OutputStream provides a flush() method to flush the remaining bytes from the output
buffer.

public void flush() throws IOException // Flush the output

e) Implementations of abstract InputStream/OutputStream

InputStream and OutputStream are abstract classes that cannot be instantiated. You need to choose an
appropriate concrete subclass to establish a connection to a physical device. For example, you can instantiate
a FileInputStream or FileOutputStream to establish a stream to a physical disk file.

f) Layered (or Chained) I/O Streams
The 1/O streams are often layered or chained with other I/O streams, for purposes such as buffering,
filtering, or data-format conversion (between raw bytes and primitive types). For example, we can layer
a BufferedInputStream to a FileInputStream for buffered input, and stack a DataInputStream in front for
formatted data input (using primitives such as int, double), as illustrated in the following diagrams.

‘ FileInputStream BufferedInputStream

Disk , Java
 ——— - —
File y : J Program
| byte block of bytes
— (buffer)
iFileInputStr‘eam BufferedInputStream DataInputStream
Disk — . Q . Java
File - J J Program
, byte block of bytes data
——— (buffer) (int, double, etc.)

File I/0O Byte-Streams

FileInputStream and FileOutputStream are concrete implementations to the abstract classes InputStream and
OutputStream, to support I/0 from disk files.

1. Buffered I/0O Byte-Streams
The read()/write() method in InputStream/OutputStream are designed to read/write a single byte of data on
each call. This is grossly inefficient, as each call is handled by the underlying operating system (which may trigger

a disk access, or other expensive operations). Buffering, which reads/writes a block of bytes from the external
device into/from a memory buffer in a single I/O operation, is commonly applied to speed up the I/0.

FileInputStream/FileOutputStream is not buffered. It is often chained to a BufferedinputStream or
BufferedOutputStream, which provides the buffering. To chain the streams together, simply pass an instance of
one stream into the constructor of another stream. For example, the following codes chain a FilelnputStream to
a BufferedInputStream, and finally, a DatalnputStream:

FileInputStream fileIn = new FileInputStream("in.dat");
BufferedInputStream bufferIn = new BufferedInputStream(fileln);
DataInputStream dataIn = new DataInputStream(bufferlIn);
// or
DataInputStream in = new DataInputStream(
new BufferedInputStream(
new FileInputStream(“in.dat")));

Example 1

Copying a file byte-by-byte without Buffering.
import java.io.¥;
public class FileCopyNoBuffer { // Pre-JDK 7
public static void main(String[] args) {
String inFileStr = "test-in.jpg";
String outFileStr = "test-out.jpg";
FileInputStream in = null;
FileOutputStream out = null;
long startTime, elapsedTime; // for speed benchmarking

// Print file length
File fileIn = new File(inFileStr);
System.out.println("File size is " + fileIn.length() + " bytes");

try {
in = new FileInputStream(inFileStr);

out = new FileOutputStream(outFileStr);

startTime = System.nanoTime();
int byteRead;
// Read a raw byte, returns an int of @ to 255.

while ((byteRead = in.read()) != -1) {
// Write the least-significant byte of int, drop the upper 3 bytes
out.write(byteRead);

1

elapsedTime = System.nanoTime() - startTime;

System.out.println("Elapsed Time is " + (elapsedTime / 10000008.8) + " msec");
} catch (I0Exception ex) {
ex.printStackTrace();
} finally { // always close the I/0 streams
try {
if (in != null) in.close();
if {out != null) out.cleose();
} catch (I0Exception ex) {
ex.printStackTrace();

Output

File size is 417455 bytes
Elapsed Time is 3781.500581 msec

This example copies a file by reading a byte from the input file and writing it to the output file. It uses
FileInputStream and FileOutputStream directly without buffering. Notice that most the 1/O methods "throws"
IOException, which must be caught or declared to be thrown. The method close() is programmed inside the finally
clause. It is guaranteed to be run after try or catch. However, method close() also throws an I0Exception, and
therefore must be enclosed inside a nested try-catch block, which makes the codes a little ugly.

We used System.nanoTime(), which was introduced in JDK 1.5, for a more accurate measure of the elapsed
time, instead of the legacy not-so-precise System.currentTimeMillis(). The output shows that it took about 4
seconds to copy a 400KB file.

As mentioned, JDK 1.7 introduces a new try-with-resources syntax, which automatically closes all the resources
opened, after try or catch. For example, the above example can be re-written in a much neater manner as follow:

import java.io.*;
public class FileCopyNoBufferlDK7 {
public static void main(String[] args) {
String inFileStr = "test-in.gjpg";
String outFileStr = “"test-out.jpg";
long startTime, elapsedTime; // for speed benchmarking

// Check file length
File fileIn = new File(inFileStr);
System.out.println("File size is " + fileIn.length{) + " bytes");

[/ "try-with-resources" automatically closes all opened resources.
try (FileInputStream in = new FileInputStream(inFileStr);
FileOutputStream out = new FileOutputStream(outFileStr)) {

startTime = System.nanoTime();

int byteRead;

// Read a raw byte, returns an int of @ to 255.

while ((byteRead = in.read()) != -1) {
// Write the least-significant byte of int, drop the upper 3 bytes
out.write(byteRead);

1

elapsedTime = System.nancoTime() - startTime;

System.out.println{"Elapsed Time is " + (elapsedTime / 10000080.8) + " msec");

} catch (IO0Exception ex) {
ex.printStackTrace();

Example 2

Copying a file with a Programmer-Managed Buffer.

import java.io.¥;
public class FileCopyUserBuffer { // Fre-JDK 7
public static void main(String[] args) {

String inFileStr = “"test-in.jpg";
String outFileStr = "test-out.jpg";
FileInputStream in = null;
FileQutputStream out = null;
long startTime, elapsedTime; [/ for speed benchmarking

// Check file length
File fileIn = new File(inFileStr);
System.out.println("File size is " + fileIn.length() + " bytes");

try {
in = new FileInputStream(inFileStr);

out = new FileOutputStream(outFileStr);
startTime = System.nanoTime();
byte[] byteBuf = new byte[4896]; // 4K byte-buffer
int numBytesRead;
while ((numBytesRead = in.read(byteBuf)) != -1) {
out.write(byteBuf, @, numBytesRead);
I
elapsedTime = System.nanoTime() - startTime;
System.out.println({"Elapsed Time is " + (elapsedTime / 1000680.8) + " msec");
1 catch (IOException ex) {
ex.printStackTrace();
} finally { // always close the streams
try {
if (in != null) in.close();
if (out != null) out.close();
} catch (IOException ex) { ex.printStackTrace(); }

St

¥

Output

File size is 417455 bytes
Elapsed Time is 2.938921 msec

This example again wuses FileInputStreamand FileOutputStreamdirectly. However, instead of
reading/writing one byte at a time, it reads/writes a 4KB block. This program took only 3 millisecond - a more than
1000 times speed-up compared with the previous example.

Larger buffer size, up to a certain limit, generally improves the I/O performance. However, there is a trade-off
between speed-up the the memory usage. For file copying, a large buffer is certainly recommended. But for
reading just a few bytes from a file, large buffer simply wastes the memory.

| re-write the program using JDK 1.7, and try on various buffer size on a much bigger file of 26 MB.

impeort java.io.*;
public class FileCopyUserBufferLoopl]DK7 {
public static void main(String[] args) {
String inFileStr = "test-in.jpg";
String outFileStr = “test-out.jpg";
long startTime, elapsedTime; [/ for speed benchmarking

[/ Check file length
File fileln = new File(inFileStr);
System.out.println("File size is " + fileIn.length() + " bytes");

int[] bufSizekB = {1, 2, 4, 8, 16, 32, 64, 256, 1824}; // in KB
int bufsize; // in bytes

for (int run = @; run < bufSizekB.length; ++run) {
bufSize = bufSizeKB[run] * 1824;
try (FileInputStream in = new FileInputStream(inFileStr);
FileQutputStream out = new FileOQutputStream(outFileStr)) {
startTime = System.nanoTime();
byte[] byteBuf = new byte[bufSize];
int numBytesRead;
while ((numBytesRead = in.read(byteBuf)) = -1) {
out.write(byteBuf, @, numBytesRead);
i
elapsedTime = System.nancTime() - startTime;
System.out.printf("%4dKB: %6.2fmseckn", bufSizeKB[run], (elapsedTime / 10060086.8));
//System.out.println{"Elapsed Time is " + (elapsedTime / 1886680.8) + " msec");
} catch (IOException ex) {
ex.printStackTrace();

e

Output

File size is 26246026 bytes [26 MB]
1KB: 573.54msec
2KB: 316.43msec
4KB: 178.47msec
8KB: 116.32msec
16KB: 85.61lmsec
32KB: 65.92msec
64KB: 57.81msec
256KB: 63.38msec
1024KB: 9S8.87msec

Increasing buffer size helps only up to a certain point?!

Example 3
Copying a file with Buffered Streams.

import java.io.¥;
public class FileCopyBufferedStream { // Pre-JDK 7
public static void main(String[] args) {
String inFileStr = “"test-in.jpg";
String outFileStr = “test-out.jpg";
BufferedInputStream in = null:;
BufferedOutputStream out = null;
long startTime, elapsedTime; // for speed benchmarking

// Check file length
File fileIn = new File(inFileStr);
System.out.println("File size is " + fileIn.length() + " bytes");

try {
in = new BufferedInputStream(new FileInputStream(inFileStr));

out = new BufferedOutputStream(new FileOutputStream(outFileStr));
startTime = System.nanoTime();
int byteRead;

while {(byteRead = in.read()) != -1) { // Read byte-by-byte from buffer
out.write{byteRead);

e

elapsedTime = System.nanoTime() - startTime;

System.out.println("Elapsed Time is " + (elapsedTime / 10000080.08) + " msec");
} catch (IOException ex) {

ex.printStackTrace();
1} finally { // always close the streams

try {
if (in != pull) in.close()};
if (out != null) out.close();
} catch (IOException ex) { ex.printStackTrace(); }

Output

File size is 417455 bytes
Elapsed Time is 61.834954 msec

1. File 1/0 Character-Streams

FileReader and FileWriter are concrete implementations to
the abstract superclasses Reader and Writer, to support I/0 from disk
files. FileReader/FileWriter assumes that the default character encoding (charset) is used for the disk file.
The default charset is kept in the JVM's system property "file.encoding". You can get the default charset
via static method java.nio.charset.Charset.defaultCharset() or System.getProperty("file.enc
oding"). Itis probable safe to use FileReader/FileWriter for ASCII texts, provided that the default charset is
compatible to ASCII (such as US-ASCII, ISO-8859-x, UTF-8, and many others, but NOT UTF-16, UTF-16BE, UTF-16LE
and many others). Use of FileReader/FileWriter is NOT recommended as you have no control of the file
encoding charset.

2. Buffered I/O Character-Streams

BufferedReader and BufferedWriter can be stacked on top of FileReader/FileWriter or other
character streams to perform buffered 1/0, instead of character-by-character. BufferedReader provides a new
method readLine(), which reads a line and returns a String (without the line delimiter). Lines could be
delimited by "\n" (Unix), "\r\n" (Windows), or "\r" (Mac).

Example 4

import java.io.*;
/f Write a text message to an output file, then read it back.
// FileReader/FilelWiriter uses the default charset for file encoding.
public class BufferedFileReaderliriterl]DK7 {
public static void main(String[] args) {
String strFilename = “out.txt";
5tring message = "Hello, world!\nHello, world againi\n"; // 2 lines of texts

[/ Print the default charset
System.out.println(java.nio.charset.Charset.defaultCharset());

try (BufferediWriter out = new Bufferediiriter(new FileWriter(strFilename))) {
out.write(message);
out.flush();

1 catch (I0Exception ex) {
ex.printStackTrace();

try (BufferedReader in = new BufferedReader(new FileReader(strFilename))) {
String inline;
while ((inline = in.readLine()) != null) { // exclude newline
System.out.println(inline);
b
} catch {IOException ex) {
ex.printStackTrace();

3. Character Set (or Charset)

JDK 1.4 provides a new package java.nio.charset as part of NIO (New |10) to support character translation
between the Unicode (UCS-2) used internally in Java program and external devices which could be encoded in any
other format (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, UTF-16BE, UTF-16LE, and etc.)

The main class java.nio.charset.Charset provides static methods for testing whether a particular
charset is supported, locating charset instances by name, and listing all the available charsets and the default
charset.
public static SortedMap<String,Charset> availableCharsets() // lists all the available charsets
public static Charset defaultCharset() // Returns the default charset

public static Charset forName(String charsetName) // Returns a Charset instance for the given charset name (in String)
public static boolean isSupported(String charsetMame) [/ Tests if this charset name is supported

Example 5

import java.nio.charset.Charset;
public class TestCharset {
public static void main(String[] args) {
// Print the detault Charset
System.out.println("The default charset is " + Charset.defaultCharset());

System.out.println("The default charset is " + System.getProperty("file.encoding"));

[/ Print the list of available Charsets in name=Charset
System.out.println("The available charsets are:");
System.out.println(Charset.availableCharsets());

// Check if the given charset name is supported

System.out.println(Charset.isSupported("UTF-8")); // true
System.out.println(Charset.isSupported("UTF8")); [/ true
System.out.println{Charset.isSupported("UTF_8")); // false

// Get an instance of a Charset

Charset charset = Charset.forName("UTF8");

[/ Print this Charset name

System.out.println(charset.name()); ff "UTF-8"

// Print all the other aliases

System.out.println(charset.aliases()); // [UTF8, unicolor-1-1-utf-8]

The default charset for file encoding is kept in the system property "file.encoding". To change the JVM's
default charset for file encoding, you can use command-line VM option "-Dfile.encoding". For example, the
following command run the program with default charset of UTF-8.

> java -Dfile.encoding=UTF-8 TestCharset

Most importantly, the Charset class provides methods to encode/decode characters from UCS-2 used in Java
program and the specific charset used in the external devices (such as UTF-8).

public final ByteBuffer encode(String s)

public final ByteBuffer encode(CharBuffer cb)

// Encodes Unicode UCS-2 characters in the CharBuffer/String

// into a "byte sequence" using this charset, and returns a ByteBuffer.

public final CharBuffer decode(ByteBuffer bb)
// Decode the byte sequence encoded using this charset in the ByteBuffer
// to Unicode UCS-2, and return a charBuffer.

The encode()/decode() methods operate on ByteBuffer and CharBuffer introduced also in JDK 1.4, which
will be explain in the New 1/0 section.

Example 6
The following example encodes some Unicode texts in various encoding scheme, and display the Hex codes of
the encoded byte sequences.

import java.nio.ByteBuffer;
import jawva.nio.CharBuffer;
import java.nio.charset.Charset;

public class TestCharsetEncodeDecode {
public static void main(String[] args) {
[/ Try these charsets for enceding
String[] charsetNames = {"US-ASCII", "ISD-8859-1", "“UTF-8", "UTF-1g&",
"UTF-16BE", “UTF-16LE", "GBK", "BIGS5"};

String message = "Hi,®&WF!"; // Unicode message to be encoded

// Print UCS-2 in hex codes

System.out.printf("%108s: ", "UCS-2");

for (int 1 = B; i < message.length(); ++1) {
System.out.printf("#84X ", (int)message.charAt(i));

1
System.out.println();

for (String charsetName: charsetlNames) {
// Get a Charset instance given the charset name string
Charset charset = Charset.forlName(charsetName);
System.out.printf("%10s: ", charset.name());

// Encode the Unicode UCS-2 characters into a byte sequence in this charset.
ByteBuffer bb = charset.encode(message);
while (bb.hasRemaining()) {

System.out.printf("%e2X ", bb.get()); // Print hex code

1
System.out.println();

bb.rewind();

}
Output
UCS-2: 0048 0069 002C 60A8 597D 0021 [16-bit fixed-length]
H i , Z w7 |
US-ASCII: 48 69 2C 3F 3F 21 [8-bit fixed-length]
H i , ? 2?2 |
IS0-8859-1: 48 69 2C 3F 3F 21 [8-bit fixed-length]
H i , 2?2 2?2 |
UTF-8: 48 69 2C E6 82 A8 E5 A5 BD 21 [1-4 bytes variable-length]

H i , & 53 !
UTF-16: EE FF 90 48 90 69 90 2C 60 A8 59 7D 90 21 [2-4 bytes variable-length]
BOM H i . = 7 ! [Byte-Order-Mark indicates Big-Endian]
UTF-16BE: 90 48 90 69 90 2C 60 A8 59 7D 00 21 [2-4 bytes variable-length]
H i 5 &= 53 !
UTF-16LE: 48 00 69 00 2C 00 A8 60 7D 59 21 00 [2-4 bytes variable-length]
H i B = ¥ !

GBK: 48 69 2C C4 FA BA C3 21 [1-2 bytes variable-length]
Hi , & & |

Big5: 48 69 2C Bl 7A A6 6E 21 [1-2 bytes variable-length]
Hi , & & |

Example 7

The following example tries out the encoding/decoding on CharBuffer and ByteBuffer. Buffers will be
discussed later under New /0.

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;

public class TestCharsetEncodeByteBuffer {
public static void main(String[] args) {
byte[] bytes = {0x00, 0x48, 0x00, Ox69, Ox00, 0x2C,
0x60, (byte)oxA8, 0x59, Ox7D, 0x00, 0x21}; // "Hi,&HF!"
// Print UCS-2 in hex codes
System.out.printf("%10s: ", "UCS-2");
for (int i = ©; i < bytes.length; ++i) {
System.out.printf("%02X ", bytes[i]);

)
System.out.println();

Charset charset = Charset.forName("UTF-8");

// Encode from UCS-2 to UTF-8

// Create a ByteBuffer by wrapping a byte array

ByteBuffer bb = ByteBuffer.wrap(bytes);

// Create a CharBuffer from a view of this ByteBuffer

CharBuffer cb = bb.asCharBuffer();

ByteBuffer bbOut = charset.encode(cb);

// Print hex code

System.out.printf("%10s: ", charset.name());

while (bbOut.hasRemaining()) {
System.out.printf("%02X ", bbOut.get());

¥
System.out.println();

// Decode from UTF-8 to UCS-2
bbOut.rewind();
CharBuffer cbOut = charset.decode(bbOut);
System.out.printf("%10s: ", "UCS-2");
while (cbOut.hasRemaining()) {
char aChar = cbOut.get();
System.out.printf("'%c'[%04X] ", aChar, (int)aChar); // Print char & hex code

Iy
System.out.println();

¥
Output
UCS-2: 00 48 00 69 00 2C 60 A8 59 7D 00 21
UTF-8: 48 69 2C E6 82 A8 E5 A5 BD 21
UCS-2: 'H'[0048] 'i'[@069] ','[002C] 'f&'[60A8] '¥F'[597D] '!'[0021]

4. TextFilel/O

As mentioned, Java internally stores characters (char type) in 16-bit UCS-2 character set. But the external data
source/sink could store characters in other character set (e.g., US-ASCII, ISO-8859-x, UTF-8, UTF-16, and many
others), in fixed length of 8-bit or 16-bit, or in variable length of 1 to 4 bytes.
The FileReader/FileWriter introduced earlier uses the default charset for decoding/encoding, resulted in non-
portable programs.

To choose the charset, you need to wuseInputStreamReader and OutputStreamWriter.
InputStreamReader and OutputStreamWriter are considered to be byte-to-character "bridge" streams. You can
choose the character set in the InputStreamReader's constructor:

public InputStreamReader(InputStream in) // Use default charset

public InputStreamReader(InputStream in, String charsetName) throws UnsupportedEncedingException
public InputStreamReader(InputStream in, Charset cs)

You can list the available charsets via static method java.nio.charset.Charset.availableCharsets().
The commonly-used Charset names supported by Java are:

e "US-ASCII": 7-bit ASCII (aka 1ISO646-US)
e "IS0-8859-1": Latin-1
e "UTF-8": Most commonly-used encoding scheme for Unicode
e "UTF-16BE": Big-endian (big byte first) (big-endian is usually the default)
e "UTF-16LE": Little-endian (little byte first)
e "UTF-16": with a 2-byte BOM (Byte-Order-Mark) to specify the byte order. FE FF indicates big-
endian, FF FE indicates little-endian.
As the InputStreamReader/OutputStreamiWriter often needs to read/write in multiple bytes, it is best to
wrap it with a BufferedReader/BufferedWriter.

Example 8

The following program writes Unicode texts to a disk file using various charsets for file encoding. It then reads
the file byte-by-byte (via a byte-based input stream) to check the encoded characters in the various charsets.
Finally, it reads the file using the character-based reader.

import java.io.*;

// Write texts to file using OutputStreamWriter specifying its charset encoding.
// Read byte-by-byte using FileInputStream.
// Read char-by-char using InputStreamReader specifying its charset encoding.
public class TextFileEncoding]DK7 {
public static void main(String[] args) {
String message = "Hi,f&#F!"; // with non-ASCII chars
// Java internally stores char in UCS-2/UTF-16
// Print the characters stored with Hex codes
for (int i = @; i < message.length(); ++i) {
char aChar = message.charAt(i);
System.out.printf("[%d] '%c' (%04X) ", (i+l), aChar, (int)aChar);
}
System.out.println();

// Try these charsets for encoding text file
String[] csStrs = {"UTF-8", "UTF-16BE", "UTF-16LE", "UTF-16", "GB2312", "GBK", "BIG5"};

String outFileExt = "-out.txt"; // Output filenames are "charset-out.txt"

// Write text file in the specified file encoding charset

for (int i = @; i < csStrs.length; ++i) {
try (OutputStreamWriter out =
new OutputStreamhWriter(
new FileOutputStream(csStrs[i] + outFileExt), csStrs[i]);

BufferediWriter bufOut = new BufferedWriter(out)) { // Buffered for efficiency
System.out.println(out.getEncoding()); // Print file encoding charset
bufOut.write(message);
bufOut.flush();

} catch (IOException ex) {
ex.printStackTrace();

// Read raw bytes from various encoded files
// to check how the characters were encoded.
for (int i = @; i < csStrs.length; ++i) {
try (BufferedInputStream in = new BufferedInputStream(// Buffered for efficiency
new FileInputStream(csStrs[i] + outFileExt))) {
System.out.printf("%10s", csStrs[i]); // Print file encoding charset
int inByte;
while ((inByte = in.read()) != -1) {
System.out.printf("%02X ", inByte); // Print Hex codes
}
System.out.println();
} catch (IOException ex) {
ex.printStackTrace();

// Read text file with character-stream specifying its encoding.
// The char will be translated from its file encoding charset to
// Java internal UCS-2.
for (int i = @; i < csStrs.length; ++i) {
try (InputStreamReader in =
new InputStreamReader(
new FileInputStream(csStrs[i] + outFileExt), csStrs[i]);
BufferedReader bufIn = new BufferedReader(in)) { // Buffered for efficiency
System.out.println(in.getEncoding()); // print file encoding charset
int inChar;
int count = 0;
while ((inChar = in.read()) != -1) {
++count;
System.out.printf("[%d] " '%c' (%04X) ", count, (char)inChar, inChar);
}
System.out.println();
} catch (IOException ex) {
ex.printStackTrace();

Output

[1]'H'(0048) [2]'i'(@069) [3]','(002C) [4]'#'(60A8) [5]'#F'(597D) [6]'!'(0021)

UTF-8: 48 69 2C E6 82 A8 E5 A5 BD 21
H i = '3 3 !
UTF-16BE: 00 48 00 69 00 2C 60 A8 59 7D 00 21
H i s = ¥ !
UTF-16LE: 48 @0 69 00 2C 00 A8 60 7D 59 21 00
H i 5 = jraa]
UTF-16: FE FF 00 48 00 69 00 2C 60 A8 59 7D 00 21
BOM H i) = ¥ !
GB2312: 48 69 2C C4 FA BA C3 21
H i , & '3 !
GBK: 48 69 2C C4 FA BA C3 21
H i , #& ¥ !
BIGS: 48 69 2C B1 7A A6 6E 21
H i , & 53 !
UTF8

[1]'H'(ee48) [2]'i'(@069) [3]','(002C) [4]'E' (60A8)

UnicodeBigUnmarked [UTF-16BE without BOM]
[1]'H'(0048) [2]'i'(0069) [3]','(002C) [4]'/R'(60A8)

UnicodelLittleUnmarked [UFT-16LE without BOM]
[1]'H'(0048) [2]'i'(0069) [3]','(002C) [4]'/Z'(60A8)

UTF-16
[1]'H'(0048) [2]'i'(0069) [3]','(002C) [4]'/E' (60A8)

EUC_CN [GB2312]
[1]'H'(ee48) [2]'i'(@069) [3]','(002C) [4]'E' (60A8)

GBK
[1]'H'(0048) [2]'i'(0069) [3]','(802C) [4]'4R'(60A8)

Big5

[5]'%F " (597D)

[5]1'%F " (597D)

[5]'%F " (597D)

[5]1'%F' (597D)

[5]1'%F " (597D)

[5]1'%F " (597D)

[6]"!"(0021)
[6]'!"(e021)
[6]'!"(0021)
[6]'!"(0021)
[6]'!"(0021)
[6]'!"(0021)

[1]'H'(0048) [2]'i'(0069) [3]','(002C) [4]'#:'(60A8) [5]'#F'(597D) [6]'!'(0021)

As seen from the output, the characters

#=14F is encoded differently in different charsets. Nonetheless,

the InputStreamReader is able to translate the characters into the same UCS-2 used in Java program.

TASK: Byte Stream

Write an application that uses FilelnputStream and FileOutputStream:

1. Create a new NetBeans project

a.

b.
C.
d

S

’ New Java Application i

Steps Name and Location

Select File->New Project (Ctrl+Shift+N).

Under Choose Project pane, select Java under Categories and Java Application under Projects.
Click Next.

Under Name and Location pane, for the Project Name field, type in FilelnputOutputStream as
project name. (Your Project Location may differ from the figure below).

For Create Main Class field, type in FilelnputOutputStream.

Click Finish.

1

» Choose Project Project Name: €_ [FilsnputoutnutStrearn
2. Mame and Location

Project Location: IC Symyjavaprojects Browse...

Project Falder: e ymyjavaprojects'FileinputOuutSraarn

I Use Dedicated Folder for Storing Libraries

.

Libraties Folder; | Brawwaa,

Different users and projects can share the same
compilation libraries (see Help for details).,

_— =
¥ Create Main Clags [FilelnputOutputsStream

¥ Set as Main Project

< Back 2 ” Firish)I iZancel Help

2. Provide farrago.txt as an input file. You may create this text file using any text editor program such as
Notepad or using Netbeans IDE as follows:

a.

Right click FileInputOutputStream project and select New->Other.

1) FileinputOutputStream - NetBeans IDE 6.3

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

Debug

Profile

Test
Set Configuration

Set as Main Project

Close

5 E E@ B (3 | [<defoult config> = tﬁ" t{'ﬁ B E}- CIS » i[Qc[search (cui+n)]
1 E ..ace | [] 5QL Command 45 52 [] SQL Command 46 4| 5, FieInputou wva | EEIE]
~ o= = e ol el o e L

- » 1 Empty File.. =
< “m
1-[] <default packagt e [Java Class.. r
- i =
[Flemputout G e [F] Java Package.
5[Lbrari ean and Bui =
G Lxanes [Entity Classes from Database.
Clean B | Javalntertace fthrows TOException
Generate Javadoc
[Jpanei Form... ;
Run =] JFrame Form... ¥ e

Open Required Projects

[E] Entity Class...
@ Web Service Client...

Alt+F6 ntStream(oucpucFile
it
o |

= in.read()) !'= -1){ =
t.println{c);
)z

Tream(inputFile);

b. Choose Other under Categories and Empty File under File Types. Click Next.

Steps

Choose File Type

1. Choose File Type
2

Project: |Q FilelnputOutputStream

Categories: File Types:
= [Javascript File
-1 Swing GUI Farms :I & 150N File ﬂ
{3 JavaBears Objects % Spring XML Configuration File
(3 AWT GUI Forms T INLP File
- Wit | Properties File
{1 Persistence Ty Cascading Style Sheet
= [¥] Ruby Filz
19 Hr.’hDD\-'y' e &1 AntBuild Script
& hea YAML Fils
{1 web Services 0

Description:

Creates an empty file with an arbitrary extension on your disk.

=

< Back |iNext >j| firish | Cancel | Help

Observe that the New Empty File dialog box appears.

For the File Name field, type in farrago.txt. Click Finish.

e. Observe that the empty farrago.txt appears in the editor window. Write the contents below
to the empty file:

aon

Subclasses of OutputStream use these methods to write data onto
particular media.

For instance, a FileOutputStream uses these methods to write data into a
file.

TelnetOutputStream uses these methods to write data onto a network
connection.

ByteArrayOutputStream uses these methods to write data into an
expandable byte array.

3. Maodify the IDE generated FileInputOutputStream.java as shown below.

import java.io.*;
public class FileInputOutputStream {
public static void main(String[] args) throws IOException {

File inputFile = new File("farrago.txt");
File outputFile = new File("outagain.txt");

FileInputStream in = new FileInputStream(inputFile) ;
FileOutputStream out = new FileOutputStream(outputFile) ;
int c;

while ((c = in.read()) != -1){
System.out.println(c);
out.write(c);

}

System.out.println("FileInputStream is used to read a file and
FileOutPutStream is used for writing.");

in.close () ;
out.close();

4. Build and run the project and observe the result in the Output window. Explain why do you get such
output?

5. Open the project directory and find the file outagain.txt. What is the content of the file?

6. Re-read the codes that you have written previously in FileInputOutputStream.java and
write a line of //comment at the end of each line to explain what that particular line of
codes does to the program.

7. Modify the codes so that it can display proper characters into the Output window.

8. Modify the codes to include a try-catch block.

