# Lec 08: WAN Network Design Network Topology

Mohamed Elshaikh

## Internetworking

- What is internetwork
  - An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service



A simple internetwork where H represents hosts and R represents routers

## Internetworking

#### • What is IP

- IP stands for Internet Protocol
- Key tool used today to build scalable, heterogeneous internetworks
- It runs on all the nodes in a collection of networks and defines the infrastructure that allows these nodes and networks to function as a single logical internetwork



A simple internetwork showing the protocol layers

## **IP Service Model**

- Packet Delivery Model
  - Connectionless model for data delivery
  - Best-effort delivery (unreliable service)
    - packets are lost
    - packets are delivered out of order
    - duplicate copies of a packet are delivered
    - packets can be delayed for a long time
- Global Addressing Scheme
  - Provides a way to identify all hosts in the network

## Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)



#### **IP Fragmentation and Reassembly**

- Each network has some MTU (Maximum Transmission Unit)
  - Ethernet (1500 bytes), FDDI (4500 bytes)
- Strategy
  - Fragmentation occurs in a router when it receives a datagram that it wants to forward over a network which has (MTU < datagram)</li>
  - Reassembly is done at the receiving host
  - All the fragments carry the same identifier in the *Ident* field
  - Fragments are self-contained datagrams
  - IP does not recover from missing fragments

#### **IP** Fragmentation and Reassembly



IP datagrams traversing the sequence of physical networks

#### **IP** Fragmentation and Reassembly

| (a) | Start of header                   |  |   |              |  |  |
|-----|-----------------------------------|--|---|--------------|--|--|
| ĺ   | Ident=x                           |  | 0 | Offset = 0   |  |  |
|     | ader                              |  |   |              |  |  |
|     | 1400 data bytes                   |  |   |              |  |  |
| (b) | Start of header                   |  |   |              |  |  |
|     | Ident = x                         |  | 1 | Offset = 0   |  |  |
|     | ader                              |  |   |              |  |  |
|     | 512 data bytes                    |  |   |              |  |  |
| 1   |                                   |  |   |              |  |  |
|     | Start of header                   |  |   |              |  |  |
|     | Ident=x 1 Offset=64               |  |   |              |  |  |
|     | Rest of header                    |  |   |              |  |  |
|     | 512 data bytes<br>Start of header |  |   |              |  |  |
| ١   |                                   |  |   |              |  |  |
|     | Ident=x                           |  | 0 | Offset = 128 |  |  |
|     | ader                              |  |   |              |  |  |
|     | 376 data bytes                    |  |   |              |  |  |

Header fields used in IP fragmentation. (a) Unfragmented packet; (b) fragmented packets.

#### **Global Addresses**

#### • Properties

- globally unique
- hierarchical: network + host
- 4 Billion IP address, half are A type, ¼ is B type, and 1/8 is C type
- Format



- Dot notation
  - 10.3.2.4
  - 128.96.33.81
  - 192.12.69.77

### **IP Datagram Forwarding**

- Strategy
  - every datagram contains destination's address
  - if directly connected to destination network, then forward to host
  - if not directly connected to destination network, then forward to some router
  - forwarding table maps network number into next hop
  - each host has a default router
  - each router maintains a forwarding table

| • | Example (rc | NetworkNum | NextHop     |
|---|-------------|------------|-------------|
|   |             | 1          | R1          |
|   |             | 2          | Interface 1 |
|   |             | 3          | Interface 0 |
|   |             | 4          | R3          |

#### **IP Datagram Forwarding**

#### • Algorithm

if (NetworkNum of destination = NetworkNum of one of my
interfaces) then

deliver packet to destination over that interface

else

if (NetworkNum of destination is in my forwarding table)
then

deliver packet to NextHop router

#### else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this simplifies to

if (NetworkNum of destination = my NetworkNum) then
 deliver packet to destination directly

#### else

deliver packet to default router

- Add another level to address/routing hierarchy: *subnet*
- Subnet masks define variable partition of host part of class A and B addresses





| • | Forwardir | SubnetNumber  | SubnetMask      | NextHop     |
|---|-----------|---------------|-----------------|-------------|
|   |           | 128.96.34.0   | 255.255.255.128 | Interface 0 |
|   |           | 128.96.34.128 | 255.255.255.128 | Interface 1 |
|   |           | 128.96.33.0   | 255.255.255.0   | R2          |

Forwarding Algorithm

```
D = destination IP address
for each entry < SubnetNum, SubnetMask, NextHop>
D1 = SubnetMask & D
if D1 = SubnetNum
if NextHop is an interface
    deliver datagram directly to destination
else
    deliver datagram to NextHop (a router)
```

Notes

- Would use a default router if nothing matches
- Not necessary for all ones in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

- Classless Inter-Domain Routing
  - A technique that addresses two scaling concerns in the Internet
    - The growth of backbone routing table as more and more network numbers need to be stored in them
    - Potential exhaustion of the 32-bit address space
  - Address assignment efficiency
    - Arises because of the IP address structure with class A, B, and C addresses
    - Forces us to hand out network address space in fixed-size chunks of three very different sizes
      - A network with two hosts needs a class C address
        - » Address assignment efficiency = 2/255 = 0.78
      - A network with 256 hosts needs a class B address
        - » Address assignment efficiency = 256/65535 = 0.39

- Exhaustion of IP address space centers on exhaustion of the class B network numbers
- Solution
  - Say "NO" to any Autonomous System (AS) that requests a class B address unless they can show a need for something close to 64K addresses
  - Instead give them an appropriate number of class C addresses
  - For any AS with at least 256 hosts, we can guarantee an address space utilization of at least 50%
- What is the problem with this solution?

- Problem with this solution
  - Excessive storage requirement at the routers.
- If a single AS has, say 16 class C network numbers assigned to it,
  - Every Internet backbone router needs 16 entries in its routing tables for that AS
  - This is true, even if the path to every one of these networks is the same
- If we had assigned a class B address to the AS
  - The same routing information can be stored in one entry
  - Efficiency = 16 × 255 / 65, 536 = 6.2%

• CIDR tries to balance the desire to minimize the number of routes that a router needs to know against the need to hand out addresses efficiently.

- CIDR uses aggregate routes
  - Uses a single entry in the forwarding table to tell the router how to reach a lot of different networks
  - Breaks the rigid boundaries between address classes

- Consider an AS with 16 class C network numbers.
- Instead of handing out 16 addresses at random, hand out a block of contiguous class C addresses
- Suppose we assign the class C network numbers from 192.4.16 through 192.4.31
- Observe that top 20 bits of all the addresses in this range are the same (11000000 00000100 0001)
  - We have created a 20-bit network number (which is in between class B network number and class C number)
- Requires to hand out blocks of class C addresses that share a common prefix

- Requires to hand out blocks of class C addresses that share a common prefix
- The convention is to place a /X after the prefix where X is the prefix length in bits
- For example, the 20-bit prefix for all the networks 192.4.16 through 192.4.31 is represented as 192.4.16/20
- By contrast, if we wanted to represent a single class C network number, which is 24 bits long, we would write it 192.4.16/24

- How do the routing protocols handle this classless addresses
  - It must understand that the network number may be of any length
- Represent network number with a single pair
   <length, value>

• All routers must understand CIDR addressing



#### Route aggregation with CIDR

### **IP** Forwarding Revisited

- IP forwarding mechanism assumes that it can find the network number in a packet and then look up that number in the forwarding table
- We need to change this assumption in case of CIDR
- CIDR means that prefixes may be of any length, from 2 to 32 bits

## **IP** Forwarding Revisited

- It is also possible to have prefixes in the forwarding tables that overlap
  - Some addresses may match more than one prefix
- For example, we might find both 171.69 (a 16 bit prefix) and 171.69.10 (a 24 bit prefix) in the forwarding table of a single router
- A packet destined to 171.69.10.5 clearly matches both prefixes.
  - The rule is based on the principle of "longest match"
    - 171.69.10 in this case
- A packet destined to 171.69.20.5 would match 171.69 and not 171.69.10

### Address Translation Protocol (ARP)

- Map IP addresses into physical addresses
  - destination host
  - next hop router
- Techniques
  - encode physical address in host part of IP address
  - table-based
- ARP (Address Resolution Protocol)
  - table of IP to physical address bindings
  - broadcast request if IP address not in table
  - target machine responds with its physical address
  - table entries are discarded if not refreshed

#### **ARP Packet Format**

| 0                              | 8                              | 3 1             | 16 3                           |  |  |
|--------------------------------|--------------------------------|-----------------|--------------------------------|--|--|
| Hardware type=1                |                                | e type=1        | ProtocolType=0x0800            |  |  |
| HLen                           | =48                            | PLen=32         | Operation                      |  |  |
|                                | SourceHardwareAddr (bytes 0–3) |                 |                                |  |  |
| SourceHardwareAddr (bytes 4–5) |                                |                 | SourceProtocolAddr (bytes 0–1) |  |  |
| Sourcel                        | ProtocolA                      | ddr (bytes 2–3) | TargetHardwareAddr (bytes 0–1) |  |  |
| TargetHardwareAddr (bytes 2–5) |                                |                 |                                |  |  |
| TargetProtocolAddr (bytes 0–3) |                                |                 |                                |  |  |

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical and protocol addresses
- Operation: request or response
- Source/Target Physical/Protocol addresses

#### **Host Configurations**

- Notes
  - Ethernet addresses are configured into network by manufacturer and they are unique
  - IP addresses must be unique on a given internetwork but also must reflect the structure of the internetwork
  - Most host Operating Systems provide a way to manually configure the IP information for the host
  - Drawbacks of manual configuration
    - A lot of work to configure all the hosts in a large network
    - Configuration process is error-prune
  - Automated Configuration Process is required

#### Dynamic Host Configuration Protocol (DHCP)

- DHCP server is responsible for providing configuration information to hosts
- There is at least one DHCP server for an administrative domain
- DHCP server maintains a pool of available addresses

## DHCP

- Newly booted or attached host sends
   DHCPDISCOVER message to a special IP address (255.255.255.255)
- DHCP relay agent unicasts the message to DHCP
   Berver and waits for the response



#### Internet Control Message Protocol (ICMP)

- Defines a collection of error messages that are sent back to the source host whenever a router or host is unable to process an IP datagram successfully
  - Destination host unreachable due to link /node failure
  - Reassembly process failed
  - TTL had reached 0 (so datagrams don't cycle forever)
  - IP header checksum failed
- ICMP-Redirect
  - From router to a source host
  - With a better route information

#### Internet Control Message Protocol (ICMP)

- Defines a collection of error messages that are sent back to the source host whenever a router or host is unable to process an IP datagram successfully
  - Destination host unreachable due to link /node failure
  - Reassembly process failed
  - TTL had reached 0 (so datagrams don't cycle forever)
  - IP header checksum failed
- ICMP-Redirect
  - From router to a source host
  - With a better route information