
Lec 09: WAN Network Design
Routing

Mohamed Elshaikh

Routing

Forwarding versus Routing

– Forwarding:
– to select an output port based on destination address and

routing table

– Routing:
– process by which routing table is built

Routing

• Forwarding table VS Routing table

• Forwarding table
• Used when a packet is being forwarded and so must contain

enough information to accomplish the forwarding function

• A row in the forwarding table contains the mapping from a
network number to an outgoing interface and some MAC
information, such as Ethernet Address of the next hop

• Routing table
• Built by the routing algorithm as a precursor to build the

forwarding table

• Generally contains mapping from network numbers to next
hops

Routing

Example rows from (a) routing and (b) forwarding tables

Routing

• Network as a Graph

• The basic problem of routing is to find the lowest-cost path between
any two nodes

• Where the cost of a path equals the sum of the costs of all the
edges that make up the path

Routing

• For a simple network, we can calculate all shortest paths and load
them into some nonvolatile storage on each node.

• Such a static approach has several shortcomings

• It does not deal with node or link failures

• It does not consider the addition of new nodes or links

• It implies that edge costs cannot change

• What is the solution?

• Need a distributed and dynamic protocol

• Two main classes of protocols

• Distance Vector

• Link State

Distance Vector

• Each node constructs a one dimensional array (a vector)
containing the “distances” (costs) to all other nodes and
distributes that vector to its immediate neighbors

• Starting assumption is that each node knows the cost of the
link to each of its directly connected neighbors

Distance Vector

Initial distances stored at each node (global view)

Distance Vector

Initial routing table at node A

Distance Vector

Final routing table at node A

Distance Vector

Final distances stored at each node (global view)

Distance Vector

• The distance vector routing algorithm is sometimes called as
Bellman-Ford algorithm

• Every T seconds each router sends its table to its neighbor
each

• Each router then updates its table based on the new
information

• Problems include fast response to good new and slow
response to bad news. Also too many messages to update

Distance Vector

• When a node detects a link failure
• F detects that link to G has failed

• F sets distance to G to infinity and sends update to A

• A sets distance to G to infinity since it uses F to reach G

• A receives periodic update from C with 2-hop path to G

• A sets distance to G to 3 and sends update to F

• F decides it can reach G in 4 hops via A

Distance Vector

• Slightly different circumstances can
prevent the network from stabilizing
– Suppose the link from A to E goes down

– In the next round of updates, A advertises
a distance of infinity to E, but B and C
advertise a distance of 2 to E

– Depending on the exact timing of events,
the following might happen
• Node B, upon hearing that E can be

reached in 2 hops from C, concludes
that it can reach E in 3 hops and
advertises this to A

• Node A concludes that it can reach E in
4 hops and advertises this to C

• Node C concludes that it can reach E in 5
hops; and so on.

• This cycle stops only when the distances
reach some number that is large enough
to be considered infinite

– Count-to-infinity problem

Count-to-infinity Problem

• Use some relatively small number as an approximation of infinity

• For example, the maximum number of hops to get across a certain
network is never going to be more than 16

• One technique to improve the time to stabilize routing is called split
horizon
– When a node sends a routing update to its neighbors, it does not send those routes it

learned from each neighbor back to that neighbor

– For example, if B has the route (E, 2, A) in its table, then it knows it must have learned
this route from A, and so whenever B sends a routing update to A, it does not include
the route (E, 2) in that update

Count-to-infinity Problem

• In a stronger version of split horizon, called split horizon with poison
reverse

– B actually sends that back route to A, but it puts negative information in the
route to ensure that A will not eventually use B to get to E

– For example, B sends the route (E, ∞) to A

Routing Information Protocol (RIP)

Example Network

running RIP RIPv2 Packet Format

Link State Routing

Strategy: Send to all nodes (not just neighbors) information
about directly connected links (not entire routing table).

• Link State Packet (LSP)
– id of the node that created the LSP

– cost of link to each directly connected neighbor

– sequence number (SEQNO)

– time-to-live (TTL) for this packet

• Reliable Flooding
– store most recent LSP from each node

– forward LSP to all nodes but one that sent it

– generate new LSP periodically; increment SEQNO

– start SEQNO at 0 when reboot

– decrement TTL of each stored LSP; discard when TTL=0

Link State

Reliable Flooding

Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP to A
and C; (c) A and C flood LSP to B (but not X); (d) flooding is complete

Shortest Path Routing

• The algorithm
– Initialize the Confirmed list with an entry for myself; this entry has a cost of 0

– For the node just added to the Confirmed list in the previous step, call it node
Next, select its LSP

– For each neighbor (Neighbor) of Next, calculate the cost (Cost) to reach this
Neighbor as the sum of the cost from myself to Next and from Next to
Neighbor
• If Neighbor is currently on neither the Confirmed nor the Tentative list, then add

(Neighbor, Cost, Nexthop) to the Tentative list, where Nexthop is the direction I go
to reach Next

• If Neighbor is currently on the Tentative list, and the Cost is less than the currently
listed cost for the Neighbor, then replace the current entry with (Neighbor, Cost,
Nexthop) where Nexthop is the direction I go to reach Next

– If the Tentative list is empty, stop. Otherwise, pick the entry from the
Tentative list with the lowest cost, move it to the Confirmed list, and return to
Step 2.

Shortest Path Routing

• Dijkstra’s Algorithm - Assume non-negative link weights
– N: set of nodes in the graph
– l((i, j): the non-negative cost associated with the edge between nodes i, j
N and l(i, j) = if no edge connects i and j

– Let s N be the starting node which executes the algorithm to find
shortest paths to all other nodes in N

– Two variables used by the algorithm
• M: set of nodes incorporated so far by the algorithm
• C(n) : the cost of the path from s to each node n
• The algorithm

M = {s}

For each n in N – {s}

C(n) = l(s, n)

while (N M)

M = M {w} such that C(w) is the minimum

for all w in (N-M)

For each n in (N-M)

C(n) = MIN (C(n), C(w) + l(w, n))

Shortest Path Routing

• In practice, each switch computes its routing table directly
from the LSP’s it has collected using a realization of Dijkstra’s
algorithm called the forward search algorithm

• Specifically each switch maintains two lists, known as
Tentative and Confirmed

• Each of these lists contains a set of entries of the form
(Destination, Cost, NextHop)

Shortest Path Routing

Open Shortest Path First (OSPF)

OSPF Header Format OSPF Link State Advertisement

Summary

• We have looked at some of the issues involved in building
scalable and heterogeneous networks by using switches and
routers to interconnect links and networks.

• To deal with heterogeneous networks, we have discussed in
details the service model of Internetworking Protocol (IP)
which forms the basis of today’s routers.

• We have discussed in details two major classes of routing
algorithms
– Distance Vector

– Link State

