EKT433 cabling and network components

Mohamed Elshaikh

- Physical layer modeling
- Physical layer components
 - Bit domain
 - Symbol domain
 - Sample and waveform domain
- Accurate simulation of physical layer
- Physical Layer Modeling for Network Simulations

Physical layer modeling

- Physical layer:
 - describes the media that interconnects networking devices
- Wired
 - Coaxial cable
 - Twisted pair cable
 - Fiber optic
- Wireless

Wired networks

- EIA/TIA 568-A standard
 - minimum requirements for the interconnecting
 - LANS
 - Buildings
- EIA/TIA 568-B (2000)
 - EIA/TIA-568-B.1: Commercial Cabling Standard, Master Document
 - EIA/TIA-568-B.2: Twisted-pair Media
 - EIA/TIA-568-B.3: Optical Fiber Cabling Standard

UTP

Different Categories for Twisted-pair Cable, Based on TABLE 2-1 TIA568B

Category	Description	Bandwidth/Data Rate
Category 3 (CAT3) Category 5 (CAT5)	Telephone installations Class C Computer networks Class D	Up to 16 Mbps Up to 100 MHz/100 Mbps 100-m length
Enhanced CAT5 (CAT5e)	Computer networks	100 MHz/1000 Mbps applications with improved noise performance in a full duplex mode
Category 6 (CAT6)	Higher-speed computer	Up to 250 MHz networks Class E/1000Mbps CAT6 supports 10 Gbps but at distances less than 100 meters
Category 6a (CAT6a)	Increased bandwidth	Up to 500 MHz networks Class Ea/10 Gbps
Category 7 (CAT7)	Proposed standard	Up to 600 MHz speed computer networks Class F/10 Gbps
Category 7a (CAT7a)		

category /a (chi/a)

Wireless physical layer

- Divided into four domains:
 - Bit domain
 - Symbol domain
 - Sample domain
 - Wave/analog domain

TRANSMITTER

RECEIVER

Bit domain

- Connect physical layer to DLL
- Three main functions:
 - Cyclic Redundancy Check (CRC)
 - CRC bits are added to the packet bits
 - Transmission error detection (no correction)
 - Forward Error Correction (FEC)
 - Correct eventual transmission error
 - Convolutional codes are used for (noisy link)
 - Turbo-codes
 - Low-Density-Parity-Check
 - Interleaving
 - To reduce bits error

Symbol Domain

- Intermediate step
- Converts bits into symbol
- Amplitude Shift Keying (ASK)
 - symbol value represents the amplitude of the waveform
- Frequency Shift Keying (FSK)
 - symbol value corresponds to a specific frequency
- Today's technology more complex
 - bit-to-symbol mapping schemes
 - Gaussian Minimum Shift keying (GMSK) in (GSM)
 - Quadrature Amplitude Modulation (QAM) for (IEEE802.11)
 - Differential Quadrature Phase Shift Keying (DQPSK) in DAB/DVB

Sample and Waveform Domain

- Frame/Packet Synchronization.
- Channel Estimation and Equalization
- Pulse Shaping Filter/Matched Filter.
- Carrier Sensing/Energy Detection.
 - Received Signal Strength Indication (RSSI).
- DA/AD Conversion and IF Up/Down Conversion.

Simulation of Physical Layers

- Elementry operation are in:
 - Vector of bits,symbol, and samples
 - Scientific
 programming
 language is required
 - Scilab, matlab, labview, C++.

Scientific language limitation

- Slow execution speed
 - Ok with bit and symbol domains
 - Not OK with sample domain
 - determine an equivalent transmission model in symbol domain
 - Usually done
 - Less accurate
- No discrete-event support
 - Higher layers
 - implemented from scratch (NO libraries)
- Lack of interaction with network simulators

Physical Layer Modeling for Network Simulations

- Abstract from the many details of the physical layer
- physical layer impact on the transmission of frames or packets:
 - throughput,
 - Error probability
 - And delay
 - Assuming:
 - Perfect synchronization
- Simulation models accounts for:
 - FEC coding
 - Digital modulation
 - Advance transmission scheme
 - Carrier sensing
 - Other physical components (function) are assumed to be perfect
 - Packet error process (along with delay and throughput)

- Two main component:
 - Channel quality between transmitter and corresponding receiver
 - path loss,
 - shadowing,
 - fading,
 - noise
 - and interference
 - channel quality accountancy
 - average or if an instantaneous channel
 - multiple values per transmitted packet.
 - translate the channel quality into an error rate

Link-to-System Interface

- Mapping of channel state to bit-error probability
- Two types:
 - Fixed channel state (constant)
 - Dynamic channel state

- Example of fixed
 - Channel state is measured in terms of SNR
 - Bit-error is driven according to
 - modulation scheme
 - Transmitted power
 - Packet error is calculated based on the bit error
 - SNR:

$$\gamma = \frac{P_{\rm tx} \cdot h^2}{\sigma^2}$$

- Where P_{tx} is the transmit power,
- $-h^2$ is the channel gain
- And σ^2 is the equivalent background noise power of the transmission

Equivalent Channel Quality Models

- Channel quality during a packet transmission:
 - Static or dynamic
 - Static
 - Packet error -> bit error -> SNR
 - Dynamic
 - Due to
 - Fading , interference
 - SINR is used (interference case)

 $\gamma = \frac{P_{\text{tx}} \cdot h^2}{\sum_{\forall j} P_j^I \cdot h_j^2 + \sigma^2}$

Modeling Advanced Transmission Systems

- Interaction between the channel and advanced transmission schemes
- Multi-parameter dependency
- Advanced coding schemes on top of advanced transmission schemes
- Adaptation and channel feedback

Example Packet Domain Physical Layer

Sending model

Receiving model

