Lecture 2:

STREAMS

PGT307: PROGRAMMING FOR NETWORKING
elshaikh@unimap.edu.my

t’,l\.-

Objectives

 DESCRIBE and IDENTIFY basic concepts of (I/0) in Java:

* Input streams read data
 OQOutput streams write data
* Filter Streams

e Readers and writers streams

Java l/0

* Alarge part of what network programs do is simple input and
output:

* moving bytes from one system to another.
* Reading data a server sends = reading a file

* Sending text to a client =2 writing a file

Java l/0

* Java l/O (Input and Output) is used to process the
input and produce the output.

* Java uses the concept of stream to make 1/O operation fast.

 The java.io package contains ali the classes required for input
and output operations.

* We can perform file handling in java by Java |/O API.

Stream

 Astream is a sequence of data.

* |nJava a stream is composed of bytes. It's called a stream because it is
like a stream of water that continues to flow.

 |Input streams = read data

 Output streams = write data

* |nJava, 3 streams are created for us automatically.
All these streams are attached with console.

System.out: standard output stream
System.in: standard input stream

System.err: standard error stream

System.out

System.out is the first instance of the OutputStream class most
programmers encounter.

Specifically, System.out is the static out field of the java.lang.System class.

It’s an instance of java.io.PrintStream, a subclass of java.io.OutputStream.

Normally, output sent to System.out appears on the console

. console converts the numeric byte data System.out sends to it into ASCII or ISO Latin-
1 text.

//For example, this will print Hello World to the console

byte[] hello = {72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10};
System.out.write (hello);

System.in

 System.in is the input stream connected to the console.

* System.in is the static in field of the java.lang.System class. It is an
instance of java.io.InputStream.

* When the user types into the console using the platform’s default
character set (typically ASCII), the data is converted into numeric bytes
when read.

//For example, if the user types “Hello World!” and hits the return or enter
key, the following bytes will be read from System.in in this order:

72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10, 13

System.err

e System.err is commonly used for error messages.

 System.err is an instance of java.io.PrintStream, a
subclass of java.io.OutputStream .

* System.err is most comimcnly used inside the catch
clause of a try/catch block, which is useful for
debugging.

try |

// Do something that may throw an exception.
}catch (Exception e) {

System.err.println(e);

}

Java Input and Output Streams

-

File Console

W InputStream

— 1010101010 —
Read

Source

1010101010

Socket

= -

File Console

1010101010

Socket

OutputStream \\/

- .. — 1010101010 — Destination
Application

» Java application uses an input stream to read data from a source, and

an output stream to write data to a destination.

> It may be a file, an array, peripheral device or socket.

Output Streams

Java’s basic output class is java.io.OutputStream

public abstract class OutputStream

This class provides the fundamental methods needed to

write data:

public
public
public

public
public

abstract void write(int b) throws IOException
void write(byte[] data) throws IOException

void write(byte[] data, int offset, int length)
throws IOException

void flush() throws IOException
void close() throws IOException

Useful Methods of

class
‘Method ‘Description
public void write(int data) takes an integer from 0 to 255 as
throws IOException an argument and writes the
corresponding byte to the output
stream
public void write(byte[] data) used to write an array of byte to
throws IOException the current output stream.
public void flush() throws flushes the current output stream.
IOException
public void close() throws IS used to close the current output

IOException stream.

OutputStream class Hierarchy

OutputStream

T
\ ! \

FileOutputStream ByteArrayOutputStream FilterOutputStream PipedOutputStream ObjectOutputStream

T
\ \ \

DataOutputStream BufferedOQutputStream PrintStream

Buffer and Flush

e Streams can also be buffered in software, typically by chaining a BufferedOutput
Stream or a BufferedWriter to the underlying stream.

* |f you are done writing data, it’s important to flush the output stream

Why Flush?

['ve sent the message to the
client, Mow I'll wait far it to
respand.

his message isn't big enough to
bother sending. I'll wait for the

server to send some mare before |
pass this along.

[wonder where the rest of that
message is!

i Buffered)uiputStream

J

WEE SERVER WEB CLIENT

* No more data will be written onto the stream until the server
response arrives, but the response is never going to arrive
because the request has not been sent yet!

 The flush() method breaks the deadlock by forcing the
buffered stream to send its data even if the buffer isn’t yet full

FileOutputStream

e Java FileOutputStream is a subclass of OutputStream used for writing
data to a file.

* If you have to write primitive values into a file, use FileOutputStream
class.

* You can write byte-oriented as well as character-oriented data through
FileOutputStream class.

* But, for character-oriented data, it is preferred to use FileWriter class
instead.

FileOutputStream
Example 1: write byte

import java.io.FileOutputStream;
public class FileOutputStreamExample {

public static void main(String args[]){

try{
FileOutputStream fout = new FileOutputStream("D:\\testout.txt");

fout.write(65);

fout.close();

System.out.printin("Success...");
}catch(Exception e){

System.out.printin(e);

Output:

Success. ..

* The content of a text file testout.txt is set with the data A.

ASCIl TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [space] | 64 40 @ 96 60 -
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 d 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] 36 24 3 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 { 72 48 H 104 68 h
9 9 [HORIZONTAL TAB] a1 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A] 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C . 76 4C L 108 6C I
13 D [CARRIAGE RETURN] 45 20w 77 4D M 109 6D m
14 E [SHIFT OUT] 46 26 TN S 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 0 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 5 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS [DLE] 54 36 & 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 W
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 SA z 122 TA =
27 1B [ESCAPE] 59 3B : 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 ic < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 iD= 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 SE - 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F 7 95 5F - 127 7F [DEL]

FileOutputStream
Example 2: write String

import java.io.FileOutputStream;
public class FileOutputStreamExample {

public static void main(String args[]){

try{
FileOutputStream fout = new FileOutputStream("D:\\testout.txt");

String s = "Welcome to java.";

byte b[] = s.getBytes();//converting string into byte array
fout.write(b);

fout.close();

System.out.printin("Success...");

ycatch(Exception e){System.out.printin(e);}

Output:

Success. ..

* The content of a text file testout.txt is set with the data Welcome to java.

Input Streams

» Java’s basic input class is java.io.lnputStream

public abstract class InputStream

* This class provides the fundamental methods needed to

read data:

public
public
public

public
public
public

abstract int read() throws IOException
int read(byte[] input) throws IOException

int read(byte[] input, int offset, int length)
throws IOException

long skip(long n) throws IOException
int available() throws IOException
void close() throws IOException

Useful Methods of

class
‘Method ‘Description
public abstract int read() reads the next byte of data from
throws IOException the input stream. It returns -1 at

tne end of file.

public int available() throws returns an estimate of the number
IOException of bytes that can be read from the
current input stream.

public void close() throws used to close the current input
IOEXCEPtiOI’I stream.

InputStream class Hierarchy

InputStream

T
\ ! \

FilelnputStream ByteArraylnputStream FilterinputStream PipedinputStream ObjectinputStream

!
\ \ \

DatalnputStream BufferedInputStream PushBacklnputStream

FilelnputStream

e Java FilelnputStream class obtains input bytes from a file.

* Itis used for reading byte-oriented data (streams of raw bytes) such as
image data, audio, video etc.

* You can also read character-stream data.

* But, for reading streams of characters, it is recommended to use
FileReader class.

FilelnputStream
Example 1: read single character

import java.io.FileInputStream;
public class DataStreamExample {
public static void main(String args[]){
try{

FileInputStream fin = new FileInputStream("D:\\testout.txt");
inti = fin.read();
System.out.print((char)i);
fin.close();

}catch(Exception e){System.out.printin(e);}

Note: Before running the code, a text file named as "testout.txt" is required to be created. In
this file, we are having following content: Welcome to java.

After executing the above program, you will get a single character from the file which is 87
(in byte form). To see the text, you need to convert it into character.

Therefore, Output: -

FilelnputStream
Example 2: read all characters

import java.io.FileInputStream;
public class DataStreamExample {
public static void main(String args[])<{
try{
FileInputStream fin=new FileInputStream("D:\\testout.txt");
int i=0;
while((i=fin.read()) '= -1){
System.out.print((char)i);

by

fin.close();

Note: Beforeh(Enoéngi theeyoseste texiufilermimed 3s "testout.txt"” is required to be created. In

this}file, we are having following content: Welcome to java.

Output: Welcome to java.

Filter Classes

» InputStream and OutputStream are fairly raw classes.
s They only read and write bytes singly or in groups, but does not recognize the data format.

s Java provides a number of filter classes you can attach to raw streams to translate the raw bytes to
and from these and other formats.

w2 versions of filters:
o Filter Streams

o Readers and Writers.

Filter Streams

Filters are organized in a chain.

Each link in the chain receives data from
the previous filter or stream and passes
the data along to the next link in the

chain.

Every filter output stream has the same
write(), close(), and flush() methods as

java.io.OutputStream.

Every filter input stream has the same
read(), close(), and available() methods as

java.io.lnputStream.

|

In this example, a compressed, encrypted text file
arrives from the local network interface

APPLICATION

InputStreamReader)

buffered dato

GZIPInputStream ‘3

buffered compressed data

CipherlnputStream 3

BufferedinputStream

buffered, compressed, encrypted doto

o

raw compressed, encrypted data

TelnetinputStream
&

raw compressed, encrypted data

%) I Network I

Chaining Filters Together

Defines how bits and bytes of data
are organized into the larger groups
called packets, and the addressing
scheme by which different machines
find each other.

Chaining Filters Together

Filters are connected to streams by their constructors. E.g:

FileInputStream fin
BufferedInputStream bin

new FileInputStream("data.txt");
new BufferedInputStream(fin);

Most of the time, you should only use the last filter in the chain to do the
actual reading or writing
(by: overwrite the reference to the underlying input stream)

InputStream in = new FileInputStream(“data.txt");
in = new BufferedInputStream(in);

*Connection is permanent. Filters cannot be disconnected from a stream.

Buffered Streams

The BufferedOutputStream class stores written data in a buffer (protected
byte[] buf) until the buffer is full or the stream is flushed.

Then it writes the data onto the underlying output stream all at once.

A single write of many bytes is almost always much faster than many small writes
that add up to the same thing.

BufferedinputStream has 2 constructors:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)

BufferedOutputStream also has 2 constructors:

public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)

Example

import java.io.*;
public class BufferedOutputStreamExample{

public static void main(String args[])throws Exception{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

BufferedOutputStream bout=new BufferedOutputStream(fout);
String s="Welcome to JAVA.";

byte b[]=s.getBytes();

bout.write(b);

bout.flush();

bout.close();

fout.close();

System.out.println("success");

Readers and Writers

APIs for reading and writing characters:
java.io.Reader API by which characters are read.

java.io.Writer API by which characters are written.
Wherever input and output streams use bytes, readers and writers use

Concrete subclasses of Reader and Writer allow particular sources to be read and targets to
be written.

Filter readers and writers can be attached to other readers and writers to provide additional
services or interfaces.

2 most important concrete R&W subclasses:
OutputStreamWriter class

InputStreamReader class

Writer

 The Writer class mirrors the java.io.OutputStream class. It’s
abstract and has two protected constructors.

protected Writer()
protected Writer(Object lock)

* Like OutputStream, the Writer class is never used directly;
instead, it is used polymorphicaliy, through one of its subclasses.

* It has five write() methods as well as a flush() and a close()

public abstract void write(char[] text, int offset, int length)
throws IOException
public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException
public abstract void flush() throws IOException
public abstract void close() throws IOException

OutputStreamWriter

e The most important concrete subclass of Writer.

* Receives characters from a Java program, then
 converts these into bytes according to a specified encoding and

 writes them onto an underlying output stream.

e |ts constructor has 2 parameters:
1. output stream to write to

2. the encoding to use (if no encoding is specified, the default
encoding for the platform is used)

public OutputStreamWriter(OutputStream out, String encoding)
throws UnsupportedEncodingException

OutputStreamWriter

Example:

OutputStreamWriter w;
w = new OutputStreamWriter(
new FileOutputStream("OdysseyB.txt"), "Cpl253");

w.write("Auoc d° Apilyéveila favn pododdktuloc Hwc");

Reader

« Reader is the base class of all Reader's in the Java 10
API. Subclasses include a BufferedReader,
PushbackReader, InputStreamReader, StringReader
and several others.

e |tis abstract with two protected constructors. Like
InputStream and Writer, the Reader class is never used
directly, only through one of its subclasses.

Reader r = new FileReader ("c:\\data\\myfile.txt");

int data = r.read();

while (data != -1) {
char dataChar = (char)data;
data = r.read();

InputStreamReader

* InputStreamReader is the most important concrete
subclass of Reader.

* An InputStreamReader reads bytes from an underlying
input stream such as a FilelnputStream or
TelnetinputStream. It converts these into characters
according to a specified encacing and returns them.

* The constructor specifies the input stream to read from
and the encoding to use:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
throws UnsupportedEncodingException

InputStreamReader
Example:

InputStream is = new FileInputStream(“c:\\data\\input.txt");
Reader isr = new InputStreamReader(is);

int data = isr.read();
while(data !'= -1){
char theChar = (char)data;
data = isr.read();

}

isr.close();

THANK YOU

