
Lecture 2:

STREAMS

PGT307: PROGRAMMING FOR NETWORKING
elshaikh@unimap.edu.my

Objectives

• DESCRIBE and IDENTIFY basic concepts of (I/O) in Java:

• Input streams read data

• Output streams write data

• Filter Streams

• Readers and writers streams

Java I/O

• A large part of what network programs do is simple input and
output:

• moving bytes from one system to another.

• Reading data a server sends → reading a file

• Sending text to a client → writing a file

Java I/O

• Java I/O (Input and Output) is used to process the
input and produce the output.

• Java uses the concept of stream to make I/O operation fast.

• The java.io package contains all the classes required for input
and output operations.

• We can perform file handling in java by Java I/O API.

Stream

• A stream is a sequence of data.

• In Java a stream is composed of bytes. It's called a stream because it is
like a stream of water that continues to flow.

• Input streams = read data

• Output streams = write data

• In Java, 3 streams are created for us automatically.
All these streams are attached with console.

1.System.out: standard output stream

2.System.in: standard input stream

3.System.err: standard error stream

System.out
• System.out is the first instance of the OutputStream class most

programmers encounter.

• Specifically, System.out is the static out field of the java.lang.System class.

• It’s an instance of java.io.PrintStream, a subclass of java.io.OutputStream.

• Normally, output sent to System.out appears on the console

• console converts the numeric byte data System.out sends to it into ASCII or ISO Latin-
1 text.

//For example, this will print Hello World to the console

byte[] hello = {72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10};

System.out.write(hello);

System.in

• System.in is the input stream connected to the console.

• System.in is the static in field of the java.lang.System class. It is an
instance of java.io.InputStream.

• When the user types into the console using the platform’s default
character set (typically ASCII), the data is converted into numeric bytes
when read.

//For example, if the user types “Hello World!” and hits the return or enter

key, the following bytes will be read from System.in in this order:

72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10, 13

System.err

• System.err is commonly used for error messages.

• System.err is an instance of java.io.PrintStream , a
subclass of java.io.OutputStream .

• System.err is most commonly used inside the catch
clause of a try/catch block, which is useful for
debugging.

try {

// Do something that may throw an exception.

}catch (Exception e) {

System.err.println(e);

}

Java Input and Output Streams

➢ Java application uses an input stream to read data from a source, and

an output stream to write data to a destination.

➢ It may be a file, an array, peripheral device or socket.

Output Streams

• Java’s basic output class is java.io.OutputStream

• This class provides the fundamental methods needed to
write data:

public abstract class OutputStream

public abstract void write(int b) throws IOException

public void write(byte[] data) throws IOException

public void write(byte[] data, int offset, int length)
throws IOException

public void flush() throws IOException

public void close() throws IOException

Useful Methods of
OutputStream class

Method Description

public void write(int data)
throws IOException

takes an integer from 0 to 255 as

an argument and writes the

corresponding byte to the output

stream

public void write(byte[] data)
throws IOException

used to write an array of byte to

the current output stream.

public void flush() throws
IOException

flushes the current output stream.

public void close() throws
IOException

is used to close the current output

stream.

OutputStream class Hierarchy

Buffer and Flush

• Streams can also be buffered in software, typically by chaining a BufferedOutput
Stream or a BufferedWriter to the underlying stream.

• If you are done writing data, it’s important to flush the output stream

Why Flush?

• No more data will be written onto the stream until the server
response arrives, but the response is never going to arrive
because the request has not been sent yet!

• The flush() method breaks the deadlock by forcing the
buffered stream to send its data even if the buffer isn’t yet full

FileOutputStream

• Java FileOutputStream is a subclass of OutputStream used for writing
data to a file.

• If you have to write primitive values into a file, use FileOutputStream
class.

• You can write byte-oriented as well as character-oriented data through
FileOutputStream class.

• But, for character-oriented data, it is preferred to use FileWriter class
instead.

FileOutputStream
Example 1: write byte

import java.io.FileOutputStream;

public class FileOutputStreamExample {

public static void main(String args[]){

try{

FileOutputStream fout = new FileOutputStream("D:\\testout.txt");

fout.write(65);

fout.close();

System.out.println("Success...");

}catch(Exception e){

System.out.println(e);

}

}

}

Output:

* The content of a text file testout.txt is set with the data A.

Success...

FileOutputStream
Example 2: write String

import java.io.FileOutputStream;

public class FileOutputStreamExample {

public static void main(String args[]){

try{

FileOutputStream fout = new FileOutputStream("D:\\testout.txt");

String s = "Welcome to java.";

byte b[] = s.getBytes();//converting string into byte array

fout.write(b);

fout.close();

System.out.println("Success...");

}catch(Exception e){System.out.println(e);}

}

}

Output:

* The content of a text file testout.txt is set with the data Welcome to java.

Success...

Input Streams

• Java’s basic input class is java.io.InputStream

• This class provides the fundamental methods needed to
read data:

public abstract class InputStream

public abstract int read() throws IOException

public int read(byte[] input) throws IOException

public int read(byte[] input, int offset, int length)
throws IOException

public long skip(long n) throws IOException

public int available() throws IOException

public void close() throws IOException

Useful Methods of
InputStream class

Method Description

public abstract int read()
throws IOException

reads the next byte of data from

the input stream. It returns -1 at

the end of file.

public int available() throws
IOException

returns an estimate of the number

of bytes that can be read from the

current input stream.

public void close() throws
IOException

used to close the current input

stream.

InputStream class Hierarchy

FileInputStream

• Java FileInputStream class obtains input bytes from a file.

• It is used for reading byte-oriented data (streams of raw bytes) such as
image data, audio, video etc.

• You can also read character-stream data.

• But, for reading streams of characters, it is recommended to use
FileReader class.

FileInputStream
Example 1: read single character

import java.io.FileInputStream;

public class DataStreamExample {

public static void main(String args[]){

try{

FileInputStream fin = new FileInputStream("D:\\testout.txt");

int i = fin.read();

System.out.print((char)i);

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Note: Before running the code, a text file named as "testout.txt" is required to be created. In
this file, we are having following content: Welcome to java.
After executing the above program, you will get a single character from the file which is 87
(in byte form). To see the text, you need to convert it into character.
Therefore, Output:

W

FileInputStream
Example 2: read all characters

import java.io.FileInputStream;

public class DataStreamExample {

public static void main(String args[]){

try{

FileInputStream fin=new FileInputStream("D:\\testout.txt");

int i=0;

while((i=fin.read()) != -1){

System.out.print((char)i);

}

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Note: Before running the code, a text file named as "testout.txt" is required to be created. In
this file, we are having following content: Welcome to java.

Output: Welcome to java.

Filter Classes
❖ InputStream and OutputStream are fairly raw classes.

❖ They only read and write bytes singly or in groups, but does not recognize the data format.

❖ Java provides a number of filter classes you can attach to raw streams to translate the raw bytes to
and from these and other formats.

❖ 2 versions of filters:

o Filter Streams

o Readers and Writers.

Filter Streams
• Filters are organized in a chain.

• Each link in the chain receives data from
the previous filter or stream and passes
the data along to the next link in the
chain.

• Every filter output stream has the same
write(), close(), and flush() methods as
java.io.OutputStream.

• Every filter input stream has the same
read(), close(), and available() methods as
java.io.InputStream.

In this example, a compressed, encrypted text file
arrives from the local network interface

Chaining Filters Together

• Defines how bits and bytes of data
are organized into the larger groups
called packets, and the addressing
scheme by which different machines
find each other.

Chaining Filters Together
• Filters are connected to streams by their constructors. E.g:

• Most of the time, you should only use the last filter in the chain to do the
actual reading or writing
(by: overwrite the reference to the underlying input stream)

*Connection is permanent. Filters cannot be disconnected from a stream.

FileInputStream fin = new FileInputStream("data.txt");
BufferedInputStream bin = new BufferedInputStream(fin);

InputStream in = new FileInputStream("data.txt");
in = new BufferedInputStream(in);

Buffered Streams

• The BufferedOutputStream class stores written data in a buffer (protected
byte[] buf) until the buffer is full or the stream is flushed.

• Then it writes the data onto the underlying output stream all at once.

• A single write of many bytes is almost always much faster than many small writes
that add up to the same thing.

• BufferedInputStream has 2 constructors:

• BufferedOutputStream also has 2 constructors:

public BufferedInputStream(InputStream in)

public BufferedInputStream(InputStream in, int bufferSize)

public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStream out, int bufferSize)

Example
import java.io.*;

public class BufferedOutputStreamExample{

public static void main(String args[])throws Exception{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

BufferedOutputStream bout=new BufferedOutputStream(fout);

String s="Welcome to JAVA.";

byte b[]=s.getBytes();

bout.write(b);

bout.flush();

bout.close();

fout.close();

System.out.println("success");

}

}

Readers and Writers
• APIs for reading and writing characters:

• java.io.Reader API by which characters are read.

• java.io.Writer API by which characters are written.

• Wherever input and output streams use bytes, readers and writers use Unicode characters.

• Concrete subclasses of Reader and Writer allow particular sources to be read and targets to
be written.

• Filter readers and writers can be attached to other readers and writers to provide additional
services or interfaces.

• 2 most important concrete R&W subclasses:

• OutputStreamWriter class

• InputStreamReader class

Writer
• The Writer class mirrors the java.io.OutputStream class. It’s

abstract and has two protected constructors.

• Like OutputStream, the Writer class is never used directly;
instead, it is used polymorphically, through one of its subclasses.

• It has five write() methods as well as a flush() and a close()
methodpublic abstract void write(char[] text, int offset, int length)

throws IOException
public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException
public abstract void flush() throws IOException
public abstract void close() throws IOException

protected Writer()
protected Writer(Object lock)

OutputStreamWriter
• The most important concrete subclass of Writer.

• Receives characters from a Java program, then

• converts these into bytes according to a specified encoding and

• writes them onto an underlying output stream.

• Its constructor has 2 parameters:

1. output stream to write to

2. the encoding to use (if no encoding is specified, the default
encoding for the platform is used)

public OutputStreamWriter(OutputStream out, String encoding)
throws UnsupportedEncodingException

OutputStreamWriter
Example:

OutputStreamWriter w;

w = new OutputStreamWriter(

new FileOutputStream("OdysseyB.txt"), "Cp1253");

w.write("ἦµος d΄ ἠριγένeιa fάνη ῥοdοdάκtυλος Ἠώς");

Reader

• Reader is the base class of all Reader's in the Java IO
API. Subclasses include a BufferedReader,
PushbackReader, InputStreamReader, StringReader
and several others.

• It is abstract with two protected constructors. Like
InputStream and Writer, the Reader class is never used
directly, only through one of its subclasses.

Reader r = new FileReader("c:\\data\\myfile.txt");

int data = r.read();

while(data != -1) {

char dataChar = (char)data;

data = r.read();

}

InputStreamReader
• InputStreamReader is the most important concrete

subclass of Reader.

• An InputStreamReader reads bytes from an underlying
input stream such as a FileInputStream or
TelnetInputStream. It converts these into characters
according to a specified encoding and returns them.

• The constructor specifies the input stream to read from
and the encoding to use:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)

throws UnsupportedEncodingException

InputStreamReader
Example:

InputStream is = new FileInputStream("c:\\data\\input.txt");
Reader isr = new InputStreamReader(is);

int data = isr.read();
while(data != -1){

char theChar = (char)data;
data = isr.read();

}

isr.close();

