
PGT307: Threads
Mohamed Elshaikh

NEW Runnable Running TERMINATED

Sleep/
Waiting/
Blocked

Thread – States of a thread

Thread t = new Thread()

When a new thread object is created, the
Thread is said to be in new state.

t.start()

• Thread is selected by the scheduler.

• the thread is actually executing the code.

The thread has finished executing the run
method.
It moves to Dead state.
Note: You cannot use t.start() again on this
object once the thread is dead.

t.sleep(long x)

• The thread is alive but not running any code
• A thread can move to Wait or blocked state

any time.
• Then, may move to Runnable or Running

state.
• not guaranteed that the thread will go to

sleep state immediately

• The thread is ready to run.
• But not actually executing

the ‘run’ method.
• Waits for the thread

scheduler to select it for
running.

Commonly Used Methods in threads

Commonly Used
Methods in thread

Sleep()

Priorities

yield()

Join()

• Example code:

try {

Thread.sleep(1000*10); //Will sleep for Ten seconds

} catch (InterruptedException e) {

e.printStackTrace();

}

Commonly Used Methods in threads

tell the current thread
to pause for certain

time.

Sleep method
accepts time in

milliseconds

Can throw
InterruptedException.

Specified sleep time is not
guaranteed.

When complete, moves to
Runnable or Running state.

Sleep()

Priority values:

•1 (lowest priority)

•10 (highest priority).

default thread priority:

•normal (value 5)

The thread with highest
priority will be done
first.

•But no guarantee that it will
run immediately.

Current running thread
has highest priority

compared to threads
that are waiting.

Thread scheduler
decides which thread .

t.setPriority() - method
set the priorities on a

thread object.

The Priority should be
set BEFORE the threads

start() method is
invoked.

Commonly Used Methods in threads
Priorities

Commonly Used Methods in threads

yield()

tells the currently running
thread to give way to

other threads with equal
priority in the thread

pool.

No guarantee that the
currently executing thread
will go to runnable state.

DOES NOT make the
thread go to wait or
blocking state.

• At the most, will change thread
to move from running to
runnable state.

Commonly Used Methods in threads

tells the currently running
thread to pause and wait

until another thread
completes.

Guaranteed :

the currently executing
thread will stop its execution

• will run after the thread (on which
join is invoked) is complete.

Usually used if a thread
needs to wait for a result

from another thread.

Join()

double[] array = new double [200];
for (int n = 1; n < array.length; n++) {

array[n] = Math.random(); }

AThread t = new AThread(array);
t.start();
try{

t.join();
System.out.println (“Minimum: “ + array[0];
} catch (InterruptedException e) {

}

The current thread pauses and let
Athread runs until complete.

After Athread finishes, the main
thread runs to print minimum value

Sample code:

Commonly Used Methods in threads

Join()

double[] array = new double [200];
for (int n = 1; n < array.length; n++) {

array[n] = Math.random(); }

AThread t = new AThread(array);
t.start();
try{

t.join();
System.out.println (“Minimum: “ + array[0];
} catch (InterruptedException e) {

}

Sample code:

Thread
Main

t.join();

Synchronization

• There can be instances when two or more threads access a common resource
(data/file).

• In order to maintain consistency, it is imperative that the resource is made available
to only one thread at a time.

• If multiple threads require an access to an object, synchronization helps in
maintaining consistency.

• Synchronization is to prevent data corruption by allowing only one thread to perform
an operation on an object at a time.

• For simple synchronization Java provides the synchronized keyword

Synchronization

• Two ways to implement thread synchronization:

1. synchronized method

• Using synchronized keyword with method definition

2. synchronized statements

• Using synchronized keyword with any block of code

Example 1 –
synchronizing methods

public class SynchronizedCounter implements Runnable {
private int count = 0;
public void run(){

this.increment(5);
}
public synchronized void increment(int a) { //this is a method

count += a;
System.out.println("Current: " + count);

}
}

The synchronized keyword on a method means that if this is already

locked anywhere (on this method or elsewhere) by another thread,

we need to wait till this is unlocked before entering the method

<modifier> synchronized <return type> methodName(){
//method body

}

Syntax:

Example:

Example 2 –
synchronizing blocks

public void addName(String name) { //normal method
synchronized(this) { //block of synchronized statements

lastName = name;
nameCount++;

}
nameList.add(name);

}

When synchronizing a block, key for the locking should be

supplied (usually would be this)

The advantage of not synchronizing the entire method is

efficiency.

synchronized(this){
//statement for body block

}

Syntax:

Example:

Monitors
• Each object has a “monitor” that is a token used to determine which application

thread has control of a particular object instance

• In execution of a synchronized method (or block), access to the object monitor must
be gained before the execution

• Access to the object monitor is queued

• Entering a monitor is also referred to as locking the monitor, or acquiring ownership

of the monitor

• If a thread A tries to acquire ownership of a monitor and a different thread has

already entered the monitor, the current thread (A) must wait until the other thread

leaves the monitor

Deadlock

• Synchronization can lead to another possible problem: deadlock.

• Deadlock occurs when two threads need exclusive access to the same set of
resources and each thread holds the lock on a different subset of those resources.

• If neither thread is willing to give up the resources it has, both threads come to an
indefinite halt.

Deadlock Example

public class BankAccount {

//data members

private int accountNumber;

private float balance;

public synchronized void deposit(float amount) {

balance += amount;

}

public synchronized void withdraw(float amount) {

balance -= amount;

}

public synchronized void transfer(float amount, BankAccount target) {

withdraw(amount);

target.deposit(amount);

}

}

public class MoneyTransfer implements Runnable {

private BankAccount from, to;

private float amount;

public MoneyTransfer(BankAccount from, BankAccount to,
float amount) { //constructor

this.from = from;

this.to = to;

this.amount = amount;

}

@Override

public void run() {

from.transfer(amount,to);

}

}

BankAccount aliceAccount = new BankAccount();
BankAccount bobAccount = new BankAccount();
...

// At one place
Runnable transaction1 =

new MoneyTransfer(aliceAccount, bobAccount, 1200);
Thread t1 = new Thread(transaction1);
t1.start();

// At another place
Runnable transaction2 =

new MoneyTransfer(bobAccount, aliceAccount, 700);
Thread t2 = new Thread(transaction2);
t2.start();

Deadlocks Situation

deposit()

aliceAccount bobAccount

t1 t2

deposit() ?
transfer()

withdraw()

transfer()

withdraw()

Preventing Deadlock

• The most important technique for preventing deadlock is to avoid unnecessary
synchronization.

• If there’s an alternative approach for ensuring thread safety, such as making objects
immutable or keeping a local copy of an object, use it.

• Synchronization should be a last resort for ensuring thread safety.

• If you do need to synchronize, keep the synchronized blocks small and try not to
synchronize on more than one object at a time.

Scheduling

• Thread scheduling is the mechanism used to determine how runnable threads are
allocated CPU time

• A thread-scheduling mechanism is either preemptive or cooperative

• Preemptive scheduling – the thread scheduler preempts (pauses) a running thread to
allow different threads to execute

• Cooperative scheduling – the scheduler never interrupts a running thread

• A cooperative thread scheduler waits for the running thread to pause itself before
handing off control of the CPU to a different thread.

Scheduling – Starvation

• A cooperative scheduler may cause starvation (runnable threads, ready to be
executed, wait to be executed in the CPU a lot of time, maybe even forever)

• Sometimes, starvation is also called a livelock

Time-Sliced Scheduling

• Time-sliced scheduler – the scheduler allocates a period of time that each thread
can use the CPU

• When that amount of time has elapsed, the scheduler preempts (pause) the thread
and switches to a different thread

• Nontime-sliced scheduler– the scheduler does not use elapsed time to determine
when to preempt a thread. It uses other criteria such as priority or I/O status.

Java Scheduling

• All Java virtual machines are guaranteed to use preemptive thread scheduling and
based on priority of threads.

• If a lower-priority thread is running when a higher-priority thread becomes ready to
run, the JVM will pause the lower-priority thread to allow the higher-priority thread to
run.

• The higher-priority thread preempts the lower-priority thread.

• When multiple threads of the same priority are ready to run, a preemptive thread
scheduler will occasionally pause one of the threads to allow the next one in line to get
some CPU time.

Waiting on an object

• The wait() method is part of the java.lang.Object interface

• Allows two threads to cooperate based on a single shared lock object

• It requires a lock on the object’s monitor to execute

• It must be called from a synchronized method, or from a synchronized segment of
code.

• wait() causes the current thread to wait until another thread invokes the notify()

method or the notifyAll() method for this object

• Upon call for wait(), the thread releases ownership of this monitor and waits until

another thread notifies the waiting threads of the object

The wait() method

• wait() is also similar to yield()

• Both take the current thread off the execution stack and force it to be rescheduled

• However, wait() is not automatically put back into the scheduler queue

• notify() must be called in order to get a thread back into the scheduler’s queue

Example – wait() and notify()

synchronized(lock) {
while (!resourceAvailable()) {

lock.wait();
}
consumeResource();

}

produceResource();
synchronized(lock) {

lock.notifyAll();
}

Wait until resource
available

Now available, wake up all
the threads waiting on the
object

*notify method wakes up only one thread waiting on the object and that thread starts execution.
*So if there are multiple threads waiting for an object, this method will wake up only one of them.

Thread Pools and Executors

• Adding multiple threads to a program dramatically improves performance, especially
for I/O-bound programs such as most network programs.

• However, threads are prone to cause overhead.

• Starting a thread and cleaning up after a thread that has died takes a noticeable
amount of work from the virtual machine, especially if a program spawns hundreds of
threads → this can overload the garbage collector or other parts of the VM and hurt
performance

• Switching between running threads also carries overhead.

Thread Pools and Executors
• The Executors class in java.util.concurrent makes it quite easy to set up thread

pools.

• Simply submit each task as a Runnable object to the pool.

• The method return a Future object representing the future state of the task. If you
submitted a Runnable, the Future object return null once the task finished.

A thread pool is a group of pre-instantiated, idle threads which stand ready
to be given work (instead of instantiating new threads for each task).

Preferred when there is a large number of short tasks to be done rather than
a small number of long ones.

Executors Example

➔ Let say you want to gzip every file in the current directory using a
java.util.zip.GZIPOutputStream

➔ This is a filter stream that compresses all the data it writes.

➔ This is an I/O-heavy operation because all the files have to be read and written.

➔ But, data compression is a very CPU-intensive operation, so you don’t want too many
threads running at once.

➔ Use thread pool → Each client thread will compress files while the main program
will determine which files to compress

Executors Example – GZipRunnable class

import java.io.*;
import java.util.zip.*;

public class GZipRunnable implements Runnable {
private final File input;

public GZipRunnable(File input) {
this.input = input;
}

@Override
public void run() { // don't compress an already compressed file
if (!input.getName().endsWith(".gz")) {

File output = new File(input.getParent(), input.getName() + ".gz");
if (!output.exists()) { // Don't overwrite an existing file
try {

InputStream in = new BufferedInputStream(new FileInputStream(input));
OutputStream out = new BufferedOutputStream(

new GZIPOutputStream(
new FileOutputStream(output)));)

int b;
while ((b = in.read()) != -1) out.write(b);
out.flush();

} catch (IOException ex) {
System.err.println(ex);

}
}

}
} }

Executors Example – main

import java.io.*;
import java.util.concurrent.*;
public class GZipAllFiles {

public final static int THREAD_COUNT = 4;

public static void main(String[] args) {
ExecutorService pool = Executors.newFixedThreadPool(THREAD_COUNT);

for (String filename : args) {
File f = new File(filename);
if (f.exists()) {

if (f.isDirectory()) {
File[] files = f.listFiles();
for (int i = 0; i < files.length; i++) {

if (!files[i].isDirectory()) { // don't recurse directories
Runnable task = new GZipRunnable(files[i]);
pool.submit(task);

}
}

}else{
Runnable task = new GZipRunnable(f);
pool.submit(task);

}
}

}
pool.shutdown();

}
}

constructs the pool with a fixed thread count of 4

iterates through all the files and directories listed
on the command line

files in those directories is used to construct a
GZipRunnable

submit to the pool for eventual processing by one of the 4 threads

notifies the pool that no further tasks will be added
to its internal queue

