
PGT: INTERNET ADDRESSES

Mohamed Elshaikh

Faculty of Electronics Engineering Technology – UniMAP (FTKEN-UniMAP)

Objectives

• DISCUSS and SHOW Java programs interact with the Domain Name
System through the InetAddress class.

• The InetAddress Class

• Inet4Address and Inet6Address

• The NetworkInterface Class

• Spam Check

Nodes in a network

Node/host 8

Node/host 1

Node/host 2

Node/host 3

Node/host 4

Node/host 5
Node 0

Node 7

Node/host 6

nodes
All devices that are
connected on a network.

host
A node which is a computer

IP address

IP address

IP address

IP address

IP address
IP address

IP address

IP addressIP address

Internet Addresses

Identifier for each
node/host

Unique number

Also known as IP
address

Ordered sequences of
bytes, like array

types

IPv4

• 4-bytes long

IPv6

• 16-bytes long

IPv4 - Internet Protocol Version 4

protocol in
data
communication

fourth revision of Internet Protocol (IP)

widely used over different kinds of networks.

address is
normally
written as

four unsigned bytes,

each ranging from 0 to 255,

with the most significant byte first.

Bytes are
separated by
periods

for the convenience of human eyes

dotted quad format

Eg: login.ibiblio.org = 152.19.134.132.

MSB: most
significant bit

a.k.a high-order bit, left-most bit

Usually the bit that is transmitted first in a sequence

e.g.: in the binary number 1000, MSB is 1. In 0111, MSB is 0.

IPv6 - Internet Protocol Version 6

Protocol in data
communication

sixth revision of Internet Protocol (IP)

successor to IPv4.

Address
normally written
as

eight blocks of four hexadecimal digits

Bytes are
separated by
colons (:)

Eg: www.hamiltonweather.tk =
2400:cb00:2048:0001:0000:0000:6ca2:c665

Leading zeros do not need to be written.

Therefore, the address above can be written as
2400:cb00:2048:1:0:0:6ca2:c665.

A double colon
indicates
multiple zero
blocks.

Eg: 2001:4860:4860:0000:0000:0000:0000:8888

can be written more compactly as 2001:4860:4860::8888

DNS (Domain Name Servers)

Who is www.google.com?

192.109.25.0

humans can remember hostnames
e.g.
www.unimap.edu.my
www.google.com

Computers only recognizes IP address
e.g. 165.200.124.20

• Internet's equivalent of a phone
book.

• maintain a directory of domain
names

• translate to Internet Protocol (IP)
addresses.

DNS (Domain Name Servers)

Servers
hostname

At least one hostname

Clients
hostname,

Often do not have hostnames

especially if IP address is dynamically assigned at startup.

One hostname,
multiple IP
addresses.

Not always, but sometimes can exist

the DNS server randomly choose machines to respond to each request.

Mostly used for very high-traffic websites, which has several machines.

The InetAddress Class

In Java programming, we use InetAddress class

• represents an IP address,

• both IPv4 and IPv6.

Provides methods to get the IP of any hostname.

It is used by most of the other networking classes

• Socket,

• ServerSocket,

• URL,

• DatagramSocket,

• DatagramPacket, and more.

Usually, it includes:

• a hostname

• and an IP address

Creating New InetAddress Objects
• no public constructors in the InetAddress class.

• Instead, InetAddress has static factory methods

• connect to a DNS server to resolve a hostname.

• The most common is InetAddress.getByName().

• Eg:

• It makes a connection to the local DNS server

• to look up the name and the numeric address.

• If the DNS server can’t find the address,

• this method throws an UnknownHostException (a subclass of IOException)

InetAddress address = InetAddress.getByName("www.oreilly.com");

Example :
Create an InetAddress object

import java.net.*;

public class OReillyByName {

public static void main (String[] args) {

try {

InetAddress address = InetAddress.getByName("www.oreilly.com");
System.out.println(address);

}catch (UnknownHostException ex) {

System.out.println("Could not find www.oreilly.com");

}

}

}

Output:

www.oreilly.com/208.201.239.36

Reverse Lookup

• You can also do a reverse lookup by IP address.

• For example, if you want the hostname for the address 208.201.239.100,

• pass the dotted quad address to InetAddress.getByName()

• Eg:

• If the address does not have a hostname, getHostName() simply returns the
dotted quad address supplied.

InetAddress address = InetAddress.getByName("208.201.239.100");
System.out.println(address.getHostName());

Hostname with Multiple Addresses

• If the hostname supplied has multiple addresses (referring to more than one
machine),which one getHostName() returns is indeterminate.

• If needed, call getAllByName() to get all the addresses of a host, which returns in an
array.

• Eg:

try {
InetAddress[] addresses = InetAddress.getAllByName("www.oreilly.com");
for (InetAddress address : addresses) {

System.out.println(address);
}

} catch (UnknownHostException ex) {
System.out.println("Could not find www.oreilly.com");

}

Address of the Local Machine

• The getLocalHost() method returns an InetAddress object for the host on which
your code is running.

• Eg:

• This method tries to connect to DNS to get a real hostname and IP address but if that
fails it may return the loop-back address instead.

• Without internet connection, the result would probably be → hostname “localhost”
and address “127.0.0.1”.

InetAddress me = InetAddress.getLocalHost();

Example :
Find the address of the local machine

import java.net.*;

public class MyAddress {

public static void main (String[] args) {

try {

InetAddress address = InetAddress.getLocalHost();
System.out.println(address);

} catch (UnknownHostException ex) {

System.out.println("Could not find this computer's address.");

}

}

}

Output (when this program is run on titan.oit.unc.edu server) :

titan.oit.unc.edu/152.2.22.14

Getter Methods

• The InetAddress class contains four getter methods that return the hostname as a
string and the IP address as both a string and a byte array:

Method Description

public String getHostName() Returns a String that contains the name of the host with
the IP address represented by this InetAddress object.

public String
getCanonicalHostName()

Gets the fully qualified domain name for this IP address.

public byte[] getAddress() Returns an IP address as an array of bytes in network byte
order.

public String
getHostAddress()

Returns a string containing the dotted quad format of the
IP address.

Determine IP version

• Test the number of bytes in the array returned by getAddress() to determine
whether you’re dealing with an IPv4 or IPv6 address.

import java.net.*;
public class AddressTests {
public static int getVersion(InetAddress ia) {
byte[] address = ia.getAddress();
if (address.length == 4) return 4;
else if (address.length == 16) return 6;
else return -1;

}
}

Address Types
• Java includes 10 methods for testing whether an InetAddress

object meets any of these criteria:

Method Description
public boolean isAnyLocalAddress() returns true if the address is a wildcard address

public boolean isLoopbackAddress() returns true if the address is the loopback address

public boolean isLinkLocalAddress() returns true if the address is an IPv6 link-local address

public boolean isSiteLocalAddress() returns true if the address is an IPv6 site-local address

public boolean isMulticastAddress() returns true if the address is a multicast address

public boolean isMCGlobal() returns true if the address is a global multicast address

public boolean isMCNodeLocal() returns true if the address is an interface-local multicast address

public boolean isMCLinkLocal() returns true if the address is a subnet-wide multicast address

public boolean isMCSiteLocal() returns true if the address is a site-wide multicast ad- dress

public boolean isMCOrgLocal() returns true if the address is an organization-wide multicast
address

Inet4Address and Inet6Address
• Java uses two classes, Inet4Address and Inet6Address, in order to distinguish IPv4

addresses from IPv6 addresses:

• Inet4Address overrides several of the methods in InetAddress but doesn’t change their
behavior in any public way.

• Inet6Address is similar, with one new method not present in the superclass,
isIPv4CompatibleAddress() → returns true if and only if the address is an IPv4 address
stuffed into an IPv6 container—which means only the last four bytes are nonzero.

public final class Inet4Address extends InetAddress
public final class Inet6Address extends InetAddress

The NetworkInterface Class
• The NetworkInterface provides configuration and statistical information for a network interface.

• Represents a Network Interface made up of a name, and a list of IP addresses assigned to this
interface. Interfaces are normally known by names such as "le0".

• This can either be

• a physical interface such as an additional Ethernet card (common on firewalls and routers) , or

• a virtual interface bound to the same physical hardware as the machine’s other IP addresses.

• Provides methods to list all the local addresses and to create InetAddress objects from them.

• These InetAddress objects can then be used to create sockets, server sockets, and so forth.

The NetworkInterface Class
Methods

• Because NetworkInterface objects represent physical hardware and virtual
addresses, they cannot be constructed arbitrarily.

• There are several static factory methods that return the NetworkInterface object
associated with a particular network interface :

• getByName()

• getByInetAddress()

• getNetworkInterfaces()

• You can ask for a NetworkInterface by IP address, by name, or by enumeration.

The getByName() method

• Returns a NetworkInterface object representing the network
interface with the particular name.

• If there’s no interface with that name, it returns null.

• If the underlying network stack encounters a problem while
locating the relevant network interface, a SocketException is
thrown.

• Eg – Finding network interface on UNIX machine:

public static NetworkInterface getByName(String name) throws SocketException

try {
NetworkInterface ni = NetworkInterface.getByName("eth0");
if (ni == null) {

System.err.println("No such interface: eth0");
}

}catch (SocketException ex) {
System.err.println("Could not list sockets.");

}

The getByInetAddress() method

• Returns a NetworkInterface object representing the
network interface bound to the specified IP address.

• If no network interface is bound to that IP address on the
local host, it returns null.

• If anything goes wrong, it throws a SocketException.

• Eg – Find network interface for the local loopback address

public static NetworkInterface getByInetAddress(InetAddress address) throws SocketException

try {
InetAddress local = InetAddress.getByName("127.0.0.1");
NetworkInterface ni = NetworkInterface.getByInetAddress(local);
if (ni == null) {

System.err.println("That's weird. No local loopback address.");
}

}catch(SocketException ex) {
System.err.println("Could not list network interfaces.");

}catch(UnknownHostException ex) {
System.err.println("That's weird. Could not lookup 127.0.0.1.");

}

The getNetworkInterfaces() method

• Returns a java.util.Enumeration listing all the network
interfaces on the local host.

• Eg – list all network interfaces on the local host

public static Enumeration getNetworkInterfaces() throws SocketException

import java.net.*;
import java.util.*;
public class InterfaceLister {

public static void main(String[] args) throws SocketException {
Enumeration<NetworkInterface> interfaces = NetworkInterface.getNetworkInterfaces();
while (interfaces.hasMoreElements()) {

NetworkInterface ni = interfaces.nextElement();
System.out.println(ni);

}
}

}

Output (the result of running this on the IBiblio login server):

name:eth1 (eth1) index: 3 addresses: /192.168.210.122;
name:eth0 (eth0) index: 2 addresses: /152.2.210.122;
name:lo (lo) index: 1 addresses: /127.0.0.1;

The NetworkInterface Class
Getter Methods

• Having NetworkInterface object, you can inquire about its IP address and name.

Method Description

public Enumeration
getInetAddresses()

Returns a java.util.Enumeration containing an
InetAddress object for each IP address the
interface is bound to.

public String getName() Returns the name of a particular NetworkInterface
object, such as eth0 or lo.

public String
getDisplayName()

Returns a more human-friendly name for the particular
NetworkInterface—E.g: “Ethernet Card 0” ,“Local Area
Connection” or “Local Area Connection 2.”

SpamCheck
• Monitor spammer using DNS

• To find out if a certain IP address is a known spammer:

1. reverse the bytes of the address,

2. add the domain of the blackhole service, and

3. look it up.

• If the address is found, it is a spammer.

• E.g.: If you want to ask sbl.spamhaus.org if 207.87.34.17 is a
spammer, you would look up the hostname
17.34.87.207.sbl.spamhaus.org.

• If the DNS query succeeds (returns 127.0.0.2) → the host is known
to be a spammer.

• If the lookup fails → it throws an UnknownHostException (also
means it is not a spammer)

Example : SpamCheck

package lec4s;

import java.net.*;

public class Lec4s {

public static final String BLACKHOLE = "sbl.spamhaus.org";

public static void main(String[] args) throws UnknownHostException

{

String[] addList = {"207.34.56.23","125.12.32.4","130.130.130.130"};

for (String octet : addList)

{

if (isSpammer(octet)) {

System.out.println(octet + " is a known spammer.");

} else {

System.out.println(octet + " appears legitimate.");

}

}

}

private static boolean isSpammer(String arg) {…}

}

private static boolean isSpammer(String arg) {

try {

InetAddress address = InetAddress.getByName(arg);

byte[] quad = address.getAddress();

String query = BLACKHOLE;

for (byte octet : quad) {

int unsignedByte = octet < 0 ? octet + 256 :

octet;

query = unsignedByte + "." + query;

}

InetAddress.getByName(query);

return true;

}catch(UnknownHostException e) {

return false;

}

}

Sample Output:

$ java SpamCheck 207.34.56.23 125.12.32.4 130.130.130.130
207.34.56.23 appears legitimate.
125.12.32.4 appears legitimate.
130.130.130.130 appears legitimate.

