PGT 307 HY
- 'P

@ UNIVERSITI
» MALAYSIA

U NIAP PERLIS

PERTEXT TRANSFER

ROTOCOL (HTTP)

°
° - o)
Mohamed Elshaikh
»
e Faculty of Electronics Engineering Technology — UniMAP (FTKEN-UniMAP)
R =
©
B >

DESIGN and DISPLAY how a web client talks to a server and
how data transfer from the server back to the client.

The Protocol

HTTP Methods

Cookies

A standard that defines how a web client talks to a server and how data is
transferred from the server back to the client.

Although HTTP is usually thought of as a means of transferring HTML files
and the pictures embedded in them, HTTP Is data format agnostic.

It can be used to transfer TIFF pictures, Microsoft Word documents,
Windows .exe files, or anything else that can be represented in bytes.

To write programs that use HTTP, you’ll need to understand HTTP at a
deeper level than the average web page designer.

communication between web
browsers and web servers.

HTTP is the standard protocol for h t t p :/ l Wwe
\'S

HTTP specifies
how a client and server establish a connection
how the client requests data from the server
how the server responds to that request
how the connection is closed

HTTP connections use the TCP/IP protocol for data
transfer.

HTTP
Headers

4

HTTP Request
:
<

HTTP Response

°Jo0o

For each request from client to server,
there iIs a sequence of four steps:

The client opens a TCP connection to the server on port 80,
by default; other ports may be specified in the URL.

The client sends a message to the server requesting the
resource at a specified path.

The server sends a response to the client.

The server closes the connection.

In HTTP 1.1 and later, multiple requests and responses
can be sent in series over a single TCP connection.

Steps 2 and 3 can repeat multiple times in between steps
1 and 4.

Furthermore, in HTTP 1.1, requests and responses can be
sent in multiple chunks.

multiple connections persistent connection
cliert server client SENVEr
gpeEn b GpEn —:__
S i
-:I-:-st——{____ i:——_
O EN _—ll_- -+
—> |« =
| S B
Clo s & e—t— I
P EN e s l
P Clis & et
B
F
[[—
- 4 L L

Each request and response has the same basic form:

a header line, .
an HTTP header containing metadata,

a blank line,
a message body.

GET /index.html HTTP/1.1

User-Agent: Mozilla/5.0 (Macintosh: Intel Mac 0S5 X 10.8: rv:20.8)
Gecko/20108101 Firefox/20.0

Host: en.wikipedia.org

Cannection: keep-alive

Accept-Language: en-U5,en;q=0.5

Accept-Encoding: gzip, deflate

Accept: text/html,application/xhtml+xml,application/xml:q=0.9,*/*:q=0.8

Example: A typical client request

Client Request G

3\—3"‘"“ *p}(‘\'\c
e‘\' YC\“C avy w d
\n 2 4 e vy 2 Y°\u¢ b act
The hnex e 3 l he ke e S Th
d (‘*, W ?awra \\ Y ¢
The HTTP ”CSout cﬂ’ to the Q'vrsk £ Lith 3 4 3«\?“'53“ & - that P{"f"Col versioy,
R psk \ime- Method. web s"vc% the ;hava:‘gc 4 \‘\&;\\ an is 1 ‘ﬂ“CSfans brom&
The ReA” [J se}
\ /___/_/\
GET /select/selectBeerTaste.jsp?color=dark&taste=malty HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-0O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
The RCQucs{; . Tk - .
Neadice Accept: text/xml,application/xml,application/xhtml+xml text/html;q=0.9 text/

plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%;,9=0.7

Keep-Alive: 300

Connection: keep-alive

Client request must include a request line, request header, a blank line, and a
message body (usually not required when using GET method).

HTTP/1.1 200 OK

Date: Sun, 21 Apr 2013 15:12:46 GMT

Server: Apache

Connection: close

Content-Type: text/html: charset=I50-8859-1
Content-length: 115

<html>

<heads

<title=

A& Sample HTML file

=/title>

=/head=

<body=

The rest of the document goes here
< /body=

=/html=

Example: A typical successful response.

Once the server sees the blank line on client request, it begins
sending its response to the client over the same connection.

The response begins with a status line, followed by a header
describing the response, a blank line, and the requested resource.

Server Response

1 atys cod
rojtpw\ \Iﬂioﬁ“‘“ﬁ' The &TTPT 55 onst:
The ?\Nr}D secver ! for the 1€ ¥ A text version of
Xne J the status Code.

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=0AAB6C8DE415E2E

WTTP | Content-Type: text/html | \

Response Content-Length: 397
headevs. Date: Wed, 19 Nov 2003 03:25:40 GMT
Server: Apache-Coyote/1.1

Connection: close

The body holds the <html>

HTML, or other
tontent to be </html> m L IS

Regardless of version, a response code from
100 to 199 -> indicates an informational response,
200 to 299 - indicates success,
300 to 399 - indicates redirection,
400 to 499 - indicates a client error,
500 to 599 - indicates a server error.

Full list of status codes:
https://en.wikipedia.org/wiki/List of HTTP status codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

HTTP 1.0 opens a new connection for each request - more time
taken to open and close all the connections in a typical web session
—> more time taken to transmit the data.

More problematic for encrypted HTTPS connections using SSL or
TLS - hand-shake to set up a secure socket is substantially more
work than setting up a regular socket.

In HT TP 1.1 and later, the server doesn’t have to close the socket
after it sends its response.

It can leave it open and wait for a new request from the client on the
same socket.

Multiple requests and responses can be sent in series over a single
TCP connection. However, the lockstep pattern of a client request
followed by a server response remains the same.

A client indicates that 1t’s willing to reuse a socket by including a
Connection field in the HTTP request header :

Connection: Keep-Alive

In Java, the URL class turned on HTTP Keep-Alive by default. You
can control Java’s use of HTTP Keep-Alive with several system
properties:
Set http.keepAlive to “true or false” to enable/disable HTTP Keep-
Alive. (It is enabled by default.)

Set http.maxConnections to the number of sockets you’re willing to
hold open at one time. The default is 5.

Set http.keepAlive.remainingData to true to let Java clean up after
abandoned connections (Java 6 or later). It is false by default.

Set sun.net.http.errorstream.enableBuffering to true to attempt to buffer
the relatively short error streams from 400- and 500-level responses, so
the connection can be freed up for reuse sooner. It is false by default.

Set sun.net.http.errorstream.bufferSize to the number of bytes to use for
buffering error streams. The default is 4,096 bytes.

Communication with an HTTP server follows a request-
response pattern: one stateless request followed by one

stateless response.

There are four main HTTP methods that identify the
operations that can be performed:

7
000

GET
POST
PUT
DELETE

e

*

\/
’0

1)

\/
’0

L)

HTTP
WEGEES
GET to

retrieve
information

/store/custo
mers/123456

se

POST to
add new
information

POST
/store/custo
mers

Not support
in most web browser

PUT to Remove
update (logical) an
information entity

PUT DELETE

/store/custo /store/custom
mers/123456 ers/123456

e

BACK button/Reload

Bookmarked
Cached
Encoding type

History

Restrictions on data
length

Restrictions on data
type

Security

Visibility

Harmless

Can be bookmarked
Can be cached

application/x-www-form-urlencoded

Parameters remain in browser history

Yes, when sending data, the GET method adds
the data to the URL; and the length of a URL is
limited (maximum URL length is 2048
characters)

Only ASCII characters allowed

GET is less secure compared to POST because
data sent is part of the URL

Never use GET when sending passwords or
other sensitive information!

Data is visible to everyone in the URL

POST

Data will be re-submitted (the browser
should alert the user that the data are
about to be re-submitted)

Cannot be bookmarked
Not cached

application/x-www-form-urlencoded or
multipart/form-data. Use multipart
encoding for binary data

Parameters are not saved in browser history

No restrictions

No restrictions. Binary data is also allowed

POST is a little safer than GET because the
parameters are not stored in browser
history or in web server logs

Data is not displayed in the URL

ethod besepion

HEAD
PUT
DELETE
OPTIONS
CONNECT

Same as GET but returns only HTTP headers and no document body
Uploads a representation of the specified URI

Deletes the specified resource

Returns the HTTP methods that the server supports

Converts the request connection to a transparent TCP/IP tunnel

Set request Property for URL Connection in Java

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

public class MyReq {
public static void main(String[] args) throws Exception {
URL url = new URL("http://www.x.com");
URLConnection urlc = url.openConnection();
//set the request header properties
urlc.setRequestProperty("Accept”, "*/*");
urlc.setRequestProperty("Connection", "Keep-Alive");
urlc.setRequestProperty("User-Agent", "Mozilla 5.0 (Windows; U; "
+ "Windows NT 5.1; en-US; rv:1.8.0.11) ");
InputStream is = urlc.getInputStream();
int c;
while ((c = is.read()) != -1)
System.out.print((char) c);

I cliserv - Apache NetBeans IDE 11.0 - D x

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help |Qv Search (Ctl+I)
Tl e ™D ¢ [<<cnruconns @ T D -BR-®-
Projects X | Files | Services | —
= g@ aiu P
& cliserv
E—]W elshaikh
ﬁﬁl elshaikhUnimapServer
El@ FiveIntegerSum
[E@E ftken
@ @@ ftken2021
@ gradleprojectl
@ & hello
- & HelloPGT307
- & inario1
- & Labo3
EE)& lab03ClientServer
@& lab03xx
b lecs
& lecds
. ol mahar

main - Navigat... X< |

al, |

Members ~ |%<empty> ~

=- &% Cliserv

e 'l main(String[] arags)
Output - cliserv (run) X |

<meta charset="UTF-8">

<title></title><script type="text/javascript" src="/41g6zWH.js"></script><script type="text/javas
</head>
<body>

<form method="get" action="example.php">

HEYY

<input type="text" name="std name">
<input type="submit"” name="isClicked” wvalue="KLIK">

</form>
</body>
</html>
BUILD SUCCESSFUL (total time: 1 second)

@01 8e & 98 s .)

Web transactions are “memory-less”

A cookie 1s a text file that a website stores on a client’s computer to maintain
Information about the client during and between browsing sessions.

Useful for:

A/

“* Shopping carts
% Session IDs

A/

“* Login credentials

/

s User preferences
Not recommended for storing sensitive data

Store a unique identification string that will match a user held securely in a
database

Cookies are passed from server to client and back again in
the HT TP headers of requests and responses.

For instance, a cookie set by an online bookstore might
have the value ISBN=0802099912&price=$34.95 to
specify a book that I’ve put in my shopping cart.
However, more likely, the value is a meaningless string
such as ATVPDKIKXO0DER, which identifies a particular
record in a database of some kind where the real
Information is kept.

Usually the cookie values do not contain the data but
merely point to it on the server.

Cookies are limited to nonwhitespace ASCII text, and
may not contain commas or semicolons.

To set a cookie in a browser, the server includes a Set-Cookie header line in the HTTP
header.

Example:
This HTTP header sets the cookie “cart” to the value “ATVPDKIKXO0DER”:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: cart=ATVPDKIKXODER

If a browser makes a second request to the same server, it will send the cookie back in a
Cookie line in the HTTP request header like so:

GET /index.html HTTP/1.1
Host: www.example.org
Cookie: cart=ATVPDKIKXODER
Accept: text/html

Servers can set more than one cookie.

For example, this request to Amazon fed the browser with five
cookies:

Set-Cookie:skin=noskin
Set-Cookie:ubid-main=176-5578236-9590213
Set-Cookie:session-token=Zg6afPNgbaMv2WmYFOv57zCU106Ktr
Set-Cookie:session-id-time=20827872011
Set-Cookie:session-1d=187-4969589-3049309

A cookie can be set to expire at a certain point in time by setting the expires
attribute to a date in the form

wdy, DD-Mon-YYYY HH:MM:SS GMT.
For instance, this cookie expires at 3:23 P.M. on December 21, 2017.

Set-Cookie: user=elharo; expires=Wed, 21-Dec-2017 15:23:00 GMT

You can also set the cookie to expireéfter a certain number of seconds have
passed instead of at a specific moment.

For instance, this cookie expires one hour (3,600 seconds) after it’s first set:

Set-Cookie: user="elharo"; Max-Age=3600

Java provides concrete java.net.CookieManager subclass of an abstract
java.net.CookieHandler class that defines an API for storing and retrieving
cookies.

However, it is not turned on by default. Before Java will store and return
cookies, you need to enable it:

CookieManager manager = new CookieManager () ;
CookieHandler.setDefault (manager) ;

After installing a CookieManager with those two lines of code, Java will
store any cookies sent by HTTP servers you connect to with the URL class,
and will send the stored cookies back to those same servers in subsequent
requests.

THANK YOU

