
PGT 307: HYPERTEXT TRANSFER
PROTOCOL (HTTP)

Mohamed Elshaikh

Faculty of Electronics Engineering Technology – UniMAP (FTKEN-UniMAP)

Objectives

• DESIGN and DISPLAY how a web client talks to a server and
how data transfer from the server back to the client.
❖ The Protocol
❖ HTTP Methods
❖ Cookies

Hypertext Transfer Protocol (HTTP)

• A standard that defines how a web client talks to a server and how data is
transferred from the server back to the client.

• Although HTTP is usually thought of as a means of transferring HTML files
and the pictures embedded in them, HTTP is data format agnostic.

• It can be used to transfer TIFF pictures, Microsoft Word documents,
Windows .exe files, or anything else that can be represented in bytes.

• To write programs that use HTTP, you’ll need to understand HTTP at a
deeper level than the average web page designer.

The Protocol

• HTTP specifies
❖ how a client and server establish a connection
❖ how the client requests data from the server
❖ how the server responds to that request
❖ how the connection is closed

• HTTP connections use the TCP/IP protocol for data
transfer.

◎ HTTP is the standard protocol for
communication between web
browsers and web servers.

Handling Request
(basic HTTP 1.0 procedure)

• For each request from client to server,
there is a sequence of four steps:

1. The client opens a TCP connection to the server on port 80,
by default; other ports may be specified in the URL.

2. The client sends a message to the server requesting the
resource at a specified path.
The request includes a header, and optionally (depending on the
nature of the request) a blank line followed by data for the request.

3. The server sends a response to the client.
The response begins with a response code, followed by a header full
of metadata, a blank line, and the requested document or an error
message.

4. The server closes the connection.

Handling Request
(HTTP 1.1 →)

• In HTTP 1.1 and later, multiple requests and responses
can be sent in series over a single TCP connection.

• Steps 2 and 3 can repeat multiple times in between steps
1 and 4.

• Furthermore, in HTTP 1.1, requests and responses can be
sent in multiple chunks.

Basic Form
• Each request and response has the same basic form:

❖ a header line,
❖ an HTTP header containing metadata,
❖ a blank line,
❖ a message body.

Example: A typical client request

Client Request

Client request must include a request line, request header, a blank line, and a
message body (usually not required when using GET method).

Server Response

• Once the server sees the blank line on client request, it begins
sending its response to the client over the same connection.

• The response begins with a status line, followed by a header
describing the response, a blank line, and the requested resource.

Example: A typical successful response.

Server Response

Response Status Code
• Regardless of version, a response code from

❖ 100 to 199 → indicates an informational response,
❖ 200 to 299 → indicates success,
❖ 300 to 399 → indicates redirection,
❖ 400 to 499 → indicates a client error,
❖ 500 to 599 → indicates a server error.

• Full list of status codes:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Keep-Alive
• HTTP 1.0 opens a new connection for each request → more time

taken to open and close all the connections in a typical web session
→ more time taken to transmit the data.

• More problematic for encrypted HTTPS connections using SSL or
TLS → hand-shake to set up a secure socket is substantially more
work than setting up a regular socket.

• In HTTP 1.1 and later, the server doesn’t have to close the socket
after it sends its response.

• It can leave it open and wait for a new request from the client on the
same socket.

• Multiple requests and responses can be sent in series over a single
TCP connection. However, the lockstep pattern of a client request
followed by a server response remains the same.

Keep-Alive
• A client indicates that it’s willing to reuse a socket by including a

Connection field in the HTTP request header :

• In Java, the URL class turned on HTTP Keep-Alive by default. You
can control Java’s use of HTTP Keep-Alive with several system
properties:
❖ Set http.keepAlive to “true or false” to enable/disable HTTP Keep-

Alive. (It is enabled by default.)

❖ Set http.maxConnections to the number of sockets you’re willing to
hold open at one time. The default is 5.

❖ Set http.keepAlive.remainingData to true to let Java clean up after
abandoned connections (Java 6 or later). It is false by default.

❖ Set sun.net.http.errorstream.enableBuffering to true to attempt to buffer
the relatively short error streams from 400- and 500-level responses, so
the connection can be freed up for reuse sooner. It is false by default.

❖ Set sun.net.http.errorstream.bufferSize to the number of bytes to use for
buffering error streams. The default is 4,096 bytes.

Connection: Keep-Alive

HTTP Methods
• Communication with an HTTP server follows a request-

response pattern: one stateless request followed by one
stateless response.

• There are four main HTTP methods that identify the
operations that can be performed:
❖ GET
❖ POST
❖ PUT
❖ DELETE

Compare GET vs. POST
GET POST

BACK button/Reload Harmless Data will be re-submitted (the browser
should alert the user that the data are
about to be re-submitted)

Bookmarked Can be bookmarked Cannot be bookmarked

Cached Can be cached Not cached

Encoding type application/x-www-form-urlencoded application/x-www-form-urlencoded or
multipart/form-data. Use multipart
encoding for binary data

History Parameters remain in browser history Parameters are not saved in browser history

Restrictions on data
length

Yes, when sending data, the GET method adds
the data to the URL; and the length of a URL is
limited (maximum URL length is 2048
characters)

No restrictions

Restrictions on data
type

Only ASCII characters allowed No restrictions. Binary data is also allowed

Security GET is less secure compared to POST because
data sent is part of the URL

Never use GET when sending passwords or
other sensitive information!

POST is a little safer than GET because the
parameters are not stored in browser
history or in web server logs

Visibility Data is visible to everyone in the URL Data is not displayed in the URL

Other HTTP Request Methods

Method Description

HEAD Same as GET but returns only HTTP headers and no document body

PUT Uploads a representation of the specified URI

DELETE Deletes the specified resource

OPTIONS Returns the HTTP methods that the server supports

CONNECT Converts the request connection to a transparent TCP/IP tunnel

Example:
Set request Property for URL Connection in Java

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

public class MyReq {
public static void main(String[] args) throws Exception {

URL url = new URL("http://www.x.com");
URLConnection urlc = url.openConnection();
//set the request header properties
urlc.setRequestProperty("Accept", "*/*");
urlc.setRequestProperty("Connection", "Keep-Alive");
urlc.setRequestProperty("User-Agent", "Mozilla 5.0 (Windows; U; "

+ "Windows NT 5.1; en-US; rv:1.8.0.11) ");
InputStream is = urlc.getInputStream();
int c;
while ((c = is.read()) != -1)

System.out.print((char) c);
}

}

Cookies

• Web transactions are “memory-less”

• A cookie is a text file that a website stores on a client’s computer to maintain
information about the client during and between browsing sessions.

• Useful for:
❖ Shopping carts
❖ Session IDs
❖ Login credentials
❖ User preferences

• Not recommended for storing sensitive data

• Store a unique identification string that will match a user held securely in a
database

Cookies
• Cookies are passed from server to client and back again in

the HTTP headers of requests and responses.

• For instance, a cookie set by an online bookstore might
have the value ISBN=0802099912&price=$34.95 to
specify a book that I’ve put in my shopping cart.
However, more likely, the value is a meaningless string
such as ATVPDKIKX0DER, which identifies a particular
record in a database of some kind where the real
information is kept.

• Usually the cookie values do not contain the data but
merely point to it on the server.

• Cookies are limited to nonwhitespace ASCII text, and
may not contain commas or semicolons.

Set Cookie

• To set a cookie in a browser, the server includes a Set-Cookie header line in the HTTP
header.

• Example:
This HTTP header sets the cookie “cart” to the value “ATVPDKIKX0DER”:

• If a browser makes a second request to the same server, it will send the cookie back in a
Cookie line in the HTTP request header like so:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: cart=ATVPDKIKX0DER

GET /index.html HTTP/1.1
Host: www.example.org
Cookie: cart=ATVPDKIKX0DER
Accept: text/html

Set Multiple Cookies

• Servers can set more than one cookie.

• For example, this request to Amazon fed the browser with five
cookies:

Set-Cookie:skin=noskin
Set-Cookie:ubid-main=176-5578236-9590213
Set-Cookie:session-token=Zg6afPNqbaMv2WmYFOv57zCU1O6Ktr
Set-Cookie:session-id-time=2082787201l
Set-Cookie:session-id=187-4969589-3049309

Set Cookies Expiration

• A cookie can be set to expire at a certain point in time by setting the expires
attribute to a date in the form
Wdy, DD-Mon-YYYY HH:MM:SS GMT.

• For instance, this cookie expires at 3:23 P.M. on December 21, 2017.

• You can also set the cookie to expire after a certain number of seconds have
passed instead of at a specific moment.

• For instance, this cookie expires one hour (3,600 seconds) after it’s first set:

Set-Cookie: user=elharo; expires=Wed, 21-Dec-2017 15:23:00 GMT

Set-Cookie: user="elharo"; Max-Age=3600

CookieManager

• Java provides concrete java.net.CookieManager subclass of an abstract
java.net.CookieHandler class that defines an API for storing and retrieving
cookies.

• However, it is not turned on by default. Before Java will store and return
cookies, you need to enable it:

• After installing a CookieManager with those two lines of code, Java will
store any cookies sent by HTTP servers you connect to with the URL class,
and will send the stored cookies back to those same servers in subsequent
requests.

CookieManager manager = new CookieManager();

CookieHandler.setDefault(manager);

