
PGT: Sockets

Mohamed Elshaikh

Faculty of Electronics Engineering Technology – UniMAP (FTKEN-UniMAP)

Objectives

◎ CREATE and SHOW how to write network

clients that interact with TCP servers, how to

use the socket server and to protect client

server communications using the Secure

Sockets Layer (SSL).
❖ Sockets for Clients

❖ Sockets for Servers

❖ Secure Sockets

Introduction

◎ Data is transmitted across the Internet in packets of finite

size called datagrams.

◎ Each datagram contains a header and a payload.

◎ However, because datagrams have a finite length, it’s often

necessary to split the data across multiple packets and

reassemble it at the destination.

Abstraction

◎ Datagrams are mostly hidden from the

Java programmer.

◎ The host's native networking software

transparently splits data into packets on

the sending end of a connection, and then

reassembles packets on the receiving end.

◎ Instead, the Java programmer is presented

with a higher level abstraction called a

socket.

Sockets

◎ A socket is a reliable connection for the

transmission of data between two hosts.

◎ Sockets isolate programmers from the

details of packet encodings, lost and

retransmitted packets, and packets that

arrive out of order.

◎ There are limits. Sockets are more likely

to throw IOExceptions than files, for

example.

Using Sockets

◎ A socket is a connection between two

hosts. It can perform 7 basic operations:
1. Connect to a remote machine

2. Send data

3. Receive data

4. Close a connection

5. Bind to a port

6. Listen for incoming data

7. Accept connections from remote machines

on the bound port

◎ A socket may not be connected to more

than one host at a time.

By client
(Socket class)

By server
(ServerSocket

class)

Client and Server Sockets

❖Once the connection is established, the local and remote hosts get

input and output streams from the socket and use those streams to

send data to each other.

❖ This connection is full-duplex. Both hosts can send and receive data

simultaneously.

The java.net.Socket class

◎ The java.net.Socket class allows you to

create socket objects that perform 4 fundamental

socket operations.

◎ You can connect to remote machines; you can

send data; you can receive data; you can close

the connection.

◎ Each Socket object is associated with exactly

one remote host. To connect to a different host,

you must create a new Socket object.

Constructing a Socket

◎ Connection is accomplished through the

constructors. There are 4 available constructors

in class Socket:

public Socket(String host, int port) throws

UnknownHostException, IOException

public Socket(InetAddress address, int port) throws

IOException

public Socket(String host, int port, InetAddress localAddr,

int localPort) throws IOException

public Socket(InetAddress address, int port, InetAddress

localAddr, int localPort) throws IOException

Opening Sockets

◎ The Socket() constructors do not just create a

Socket object. They also attempt to connect the

underlying socket to the remote server.

◎ All the constructors throw an IOException if the

connection can't be made for any reason.

◎ You must at least specify the remote host and port to

connect to.

◎ The host may be specified as either a string like

"unimap.edu.my" or as an InetAddress object.

◎ The port should be an int between 1 and 65535.

◎ Example:

Socket webMetalab = new Socket("unimap.edu.my", 80);

Picking an IP address

◎ The last two constructors also specify the host and port

you're connecting from.

◎ On a system with multiple IP addresses, like many web

servers, this allows you to pick your network interface

and IP address.

Port Number

◎ The port number field of an IP packet is specified as a

16-bit unsigned integer. This means that valid port

numbers range from 1 through 65535. (Port number 0 is

reserved and can't be used).

◎ Port numbers from 0-1023 are not available for user

programs in Java systems.

❖ In practice, port numbers below 1024 are reserved for

predefined services, and you should not use them unless

communicating with one of those services (such as telnet,

SMTP mail, ftp, and so on).

❖ Client ports are allocated by the host OS to something

not in use, while server port numbers are specified by the

programmer, and are used to identify a particular service.

Example:

A Custom Method to Determine Listening Port

public static void scan(InetAddress remote) {

String hostname = remote.getHostName();

for (int port = 0; port < 65536; port++) {

try {

Socket s = new Socket(remote, port);

System.out.println("A server is listening on port "

+ port + " of " + hostname);

s.close();

} catch (IOException e) {

// The remote host is not listening on this port

}

}

}

You cannot just connect to any port on any host. The remote host must actually be

listening for connections on that port.

You can use the constructors to determine which ports on a host are listening for

connections.

Choosing a Local Port

◎ You can also specify a local port number,

◎ Setting the port to 0 tells the system to

randomly choose an available port.

◎ If you need to know the port you're

connecting from, you can always get it with

getLocalPort().

◎ Example:

Socket webMetalab =

new Socket("metalab.unc.edu", 80,

"calzone.oit.unc.edu", 0);

Sending and Receiving Data

◎ Data is sent and received with output and input

streams.

◎ There are methods to get an input stream for a

socket and an output stream for the socket.

◎ There's also a method to close a socket.

public InputStream getInputStream() throws IOException

public OutputStream getOutputStream() throws IOException

public synchronized void close() throws IOException

Reading Input from a Socket
◎ The getInputStream() method returns an

InputStream which reads data from the socket.

◎ You can use all the normal methods of the

InputStream class to read this data.

◎ Most of the time you'll chain the input stream to

some other input stream or reader object to more

easily handle the data.

Example: Read input

try{

Socket s = new Socket("metalab.unc.edu", 13);

InputStream is = s.getInputStream();

InputStreamReader isr = new InputStreamReader(is);

BufferedReader br = new BufferedReader(isr);

String theTime = br.readLine();

System.out.println(theTime);

}catch(IOException e) {

return(new Date()).toString();

}finally{ //this is not needed in java 7 above

if(s != null) {

try {

s.close();

} catch (IOException ex) {

//ignore

}

}

}

The following code fragment connects to the daytime server on port 13 of

metalab.unc.edu, and displays the data it sends.

Writing Output to a Socket

◎ The getOutputStream() method returns an

output stream which writes data to the socket.

◎ Most of the time you'll chain the raw output

stream to some other output stream or writer

class to more easily handle the data.

Example: Write Output

byte[] b = new byte[128];

try {

Socket s = new Socket("metalab.unc.edu", 9);

OutputStream theOutput = s.getOutputStream();

while (true) {

int n = theInput.available();

if (n > b.length) n = b.length;

int m = theInput.read(b, 0, n);

if (m == -1) break;

theOutput.write(b, 0, n);

}

s.close();

} catch (IOException e) {}

Reading and Writing to a Socket

◎ It's unusual to only read from a socket. It's even

more unusual to only write to a socket.

◎ Most protocols require the client to both read and

write.

◎ Java places no restrictions on reading and writing

to sockets.

◎ One thread can read from a socket while another

thread writes to the socket at the same time.

Example

try {

URL u = new URL(args[i]);

if (u.getPort() != -1) port = u.getPort();

if (!(u.getProtocol().equalsIgnoreCase("http"))) {

System.err.println("I only understand http.");

}

Socket s = new Socket(u.getHost(), u.getPort());

OutputStream theOutput = s.getOutputStream();

PrintWriter pw = new PrintWriter(theOutput, false);

pw.print("GET " + u.getFile() + " HTTP/1.0\r\n");

pw.print("Accept: text/plain, text/html, text/*\r\n");

pw.print("\r\n");

pw.flush();

InputStream theInput = s.getInputStream();

InputStreamReader isr = new InputStreamReader(theInput);

BufferedReader br = new BufferedReader(isr);

String theLine;

while ((theLine = br.readLine()) != null) {

System.out.println(theLine);

}

}catch (MalformedURLException e) {

System.err.println(args[i] + " is not a valid URL");

}catch (IOException e) {

System.err.println(e);

}

Socket Methods

◎ Several methods set various socket options. Most of the

time the defaults are fine.

◎ These methods to return information about the socket:

public void setTcpNoDelay(boolean on) throws SocketException

public boolean getTcpNoDelay() throws SocketException

public void setSoLinger(boolean on, int val) throws SocketException

public int getSoLinger() throws SocketException

public synchronized void setSoTimeout(int timeout) throws SocketException

public synchronized int getSoTimeout() throws SocketException

public InetAddress getInetAddress()

public InetAddress getLocalAddress()

public int getPort()

public int getLocalPort()

Servers

◎ There are two ends to each connection: the

client, that is the host that initiates the

connection, and the server, that is the host that

responds to the connection.

◎ Clients and servers are connected by sockets.

◎ A server, rather than connecting to a remote

host, is a program waits for other hosts to

connect to it.

Server Sockets

◎ A server socket binds to a particular port on the

local machine.

◎ Once it has successfully bound to a port, it

listens for incoming connection attempts.

◎ When a server detects a connection attempt, it

accepts the connection. This creates a socket

between the client and the server over which the

client and the server communicate.

Multiple Clients

◎ Multiple clients can connect to the same port on

the server at the same time.

◎ Incoming data is distinguished by the port to

which it is addressed and the client host and port

from which it came.

◎ The server can tell for which service (like http

or ftp) the data is intended by inspecting the

port.

◎ It can tell which open socket on that service the

data is intended for by looking at the client

address and port stored with the data.

Threading

◎ No more than one server socket can listen to a

particular port at one time.

◎ Since a server may need to handle many

connections at once, server programs tend to be

heavily multi-threaded.

◎ Generally the server socket passes off the actual

processing of connections to a separate thread.

Queueing

◎ Incoming connections are stored in a queue

until the server can accept them.

◎ On most systems the default queue length is

between 5 and 50.

◎ Once the queue fills up further incoming

connections are refused until space in the queue

opens up.

The java.net.ServerSocket Class

◎ The java.net.ServerSocket class represents

a server socket.

◎ A ServerSocket object is constructed on a

particular local port. Then it calls accept() to

listen for incoming connections.

◎ accept() blocks until a connection is detected.

Then it returns a java.net.Socket object that

performs the actual communication with the

client.

Constructor

◎ There are 3 constructors that let you specify the port to

bind to, the queue length for incoming connections, and

the IP address to bind to:

public ServerSocket(int port) throws IOException

public ServerSocket(int port, int backlog) throws IOException

public ServerSocket(int port, int backlog, InetAddress bindAddr)

throws IOException

Constructing Server Sockets

◎ Normally you only specify the port you want to listen on, like this:

◎ When a ServerSocket object is created, it attempts to bind to

the port on the local host given by the port argument.

◎ If another server socket is already listening to the port, then a

java.net.BindException, a subclass of IOException, is

thrown.

◎ No more than one process or thread can listen to a particular port at

a time. This includes non-Java processes or threads.

◎ For example, if there's already an HTTP server running on port 80,

you won't be able to bind to port 80.

try {

ServerSocket ss = new ServerSocket(80);

}catch(IOException e) {

System.err.println(e);

}

◎ 0 is a special port number. It tells Java to pick an

available port.

◎ The getLocalPort() method tells you what port

the server socket is listening on. This is useful if the

client and the server have already established a separate

channel of communication over which the chosen port

number can be communicated.

◎ The accept() and close() methods provide the

basic functionality of a server socket.

◎ A server socket can’t be reopened after it’s closed

Reading Data with a ServerSocket

◎ ServerSocket objects use their accept() method

to connect to a client.

◎ There are no getInputStream() or

getOutputStream() methods for

ServerSocket.

◎ accept() returns a Socket object, and its

getInputStream() and getOutputStream()

methods provide streams.

Example: Print the input from client

import java.net.*;

import java.io.*;

public class SimpleServer{

public static void main(String[] args){

ServerSocket ss = null;

try{

ss = new ServerSocket(5432);

Socket s = ss.accept();

DataInputStream dis = new DataInputStream(s.getInputStream());

//read the data in byte, cast the data to String

String str =(String)dis.readUTF();

//print the input message by client

System.out.println("message= " + str);

s.close();

}catch(IOException e){

e.printStackTrace();

}

}

}

Example:

Writing Data to a Client
try {

//register service on port 2345

ServerSocket ss = new ServerSocket(2345);

//establish connection

Socket s = ss.accept();

//create a PrintWriter object associated with the socket

PrintWriter pw = new PrintWriter(s.getOutputStream());

pw.println("Hello There!");

pw.println("Goodbye now.");

//close the connection

s.close();

}

catch (IOException e) {

System.err.println(e);

}

Example:

Writing Data to a Client
try {

ServerSocket ss = new ServerSocket(port);

while (true) {

try {

Socket s = ss.accept();

PrintWriter pw = new PrintWriter(s.getOutputStream());

pw.print("Hello " + s.getInetAddress() + " on port "

+ s.getPort() + "\r\n");

pw.print("This is " + s.getLocalAddress() + " on port "

+ s.getLocalPort() + "\r\n");

pw.flush();

s.close();

}catch (IOException e) {}

}

}catch (IOException e) {

System.err.println(e);

}

Thank You

