NMK20303 - Database System Chapter 1

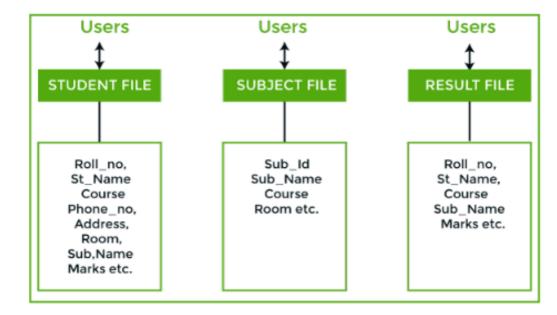
Mohamed Elshaikh

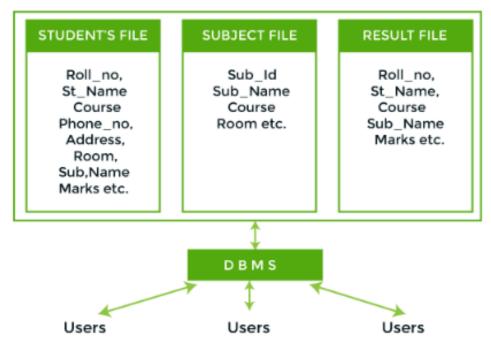
Outline

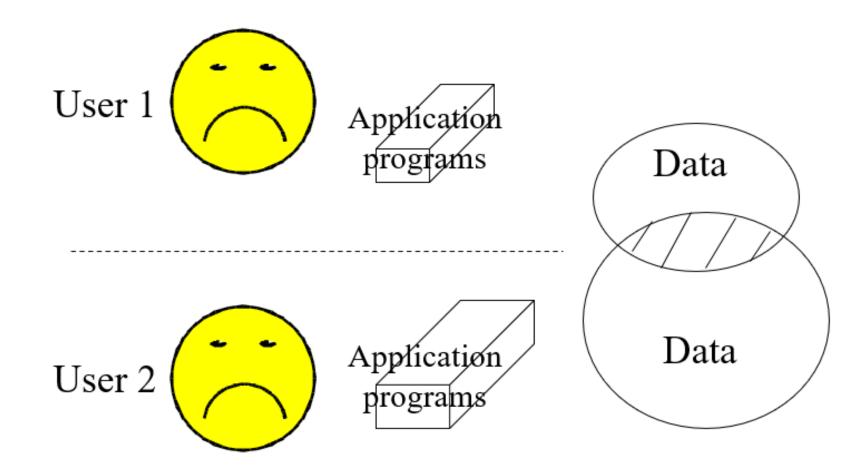
- Types of Databases and Database Applications
- Basic Definitions
- Typical DBMS Functionality
- Example of a Database (UNIVERSITY)
- Main Characteristics of the Database Approach
- Database Users
- Advantages of Using the Database Approach
- When Not to Use Databases

Types of Databases and Database Applications

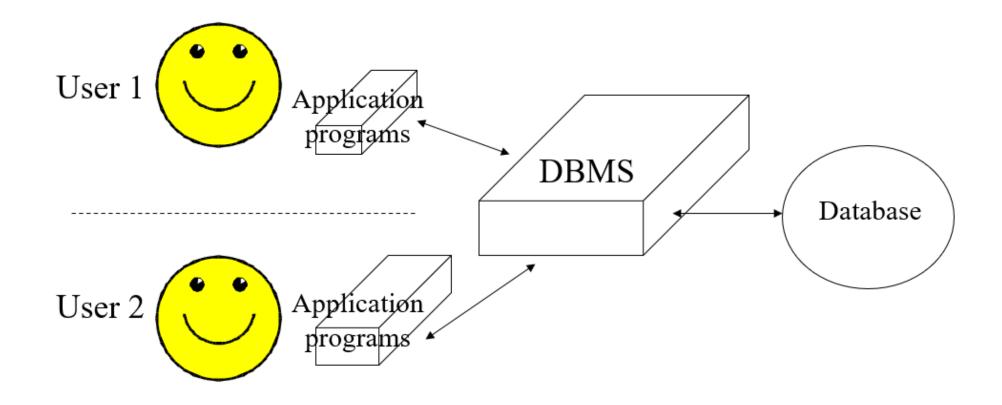
- Traditional Applications:
 - Numeric and Textual Databases
- More Recent Applications:
 - Multimedia Databases
 - Geographic Information Systems (GIS)
 - Data Warehouses
 - Real-time and Active Databases
 - Many other applications
- First part of book focuses on traditional applications
- A number of recent applications are described later in the book (for example, Chapters 24,26,28,29,30)

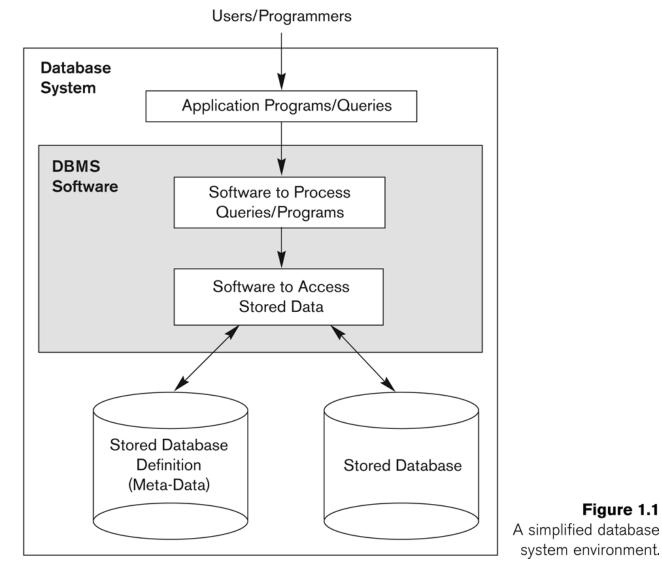

Basic definitions


- Data:
 - Known facts that can be recorded and have an implicit meaning.
- Database:
 - A collection of related data. It has the following implicit properties:
 - A database represents some aspect of the real world, sometimes called the miniworld.
 - A database is a logically coherent collection of data with some inherent meaning.
 - A database is designed, built, and populated with data for specific purpose.
 - Examples: Airline reservation system, Students' registration system
- Database Management System (DBMS):
 - A software package/ system to facilitate the creation and maintenance of a computerized database.
- Database System:
 - The DBMS software together with the data itself. Sometimes, the applications are also included.


Managing Data

- There are two approaches to manage data
 - File-based approach: An approach that utilizes a collection of application programs which performs services to end-users (e.g. Reports). Each program defines and manages its own data.
 - Database approach: An approach that data is collected and manipulated using specific software called Database Management System, and many programs share this data.

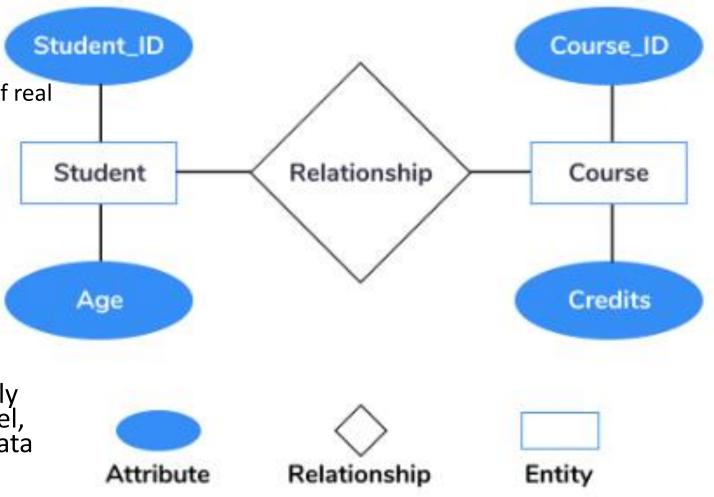



File-Based Approach

Database Approach

Simplified database system environment

Typical DBMS Functionality


- *Define* a particular database in terms of its data types, structures, and constraints
- Construct or Load the initial database contents on a secondary storage medium
- *Manipulating* the database:
 - Retrieval: Querying, generating reports
 - Modification: Insertions, deletions and updates to its content
 - Accessing the database through Web applications
- Processing and Sharing by a set of concurrent users and application programs – yet, keeping all data valid and consistent

Typical DBMS Functionality (continued)

- Other features:
 - Protection or Security measures to prevent unauthorized access
 - "Active" processing to take internal actions on data
 - Presentation and Visualization of data
 - Maintaining the database and associated programs over the lifetime of the database application
 - Called database, software, and system maintenance

Example of a Database (Conceptual Data Model)

- Mini-world
 - A database represents some aspect of real world
- Mini-world for the example:
 - Part of a UNIVERSITY environment.
- Some mini-world *entities*:
 - STUDENTs
 - COURSEs
 - SECTIONs (of COURSEs)
 - DEPARTMENTs
 - INSTRUCTORs
- Entities and relationships are typically expressed in a conceptual data model, such as the ENTITY-RELATIONSHIP data model

Example of a simplified database catalog

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerared type with all known majors. XXXXNNNN is used to define a type with four alpha characters followed by four digits

Example of a simple database

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

GRADE_REPORT

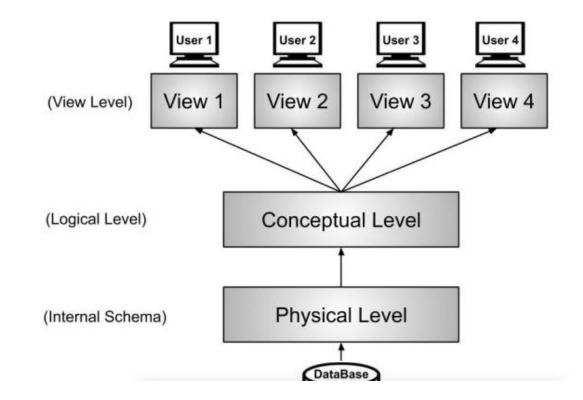
Student_number	Section_identifier	Grade	
17	112	В	
17	119	С	
8	85	А	
8	92	А	
8	102	В	
8	135	А	

PREREQUISITE

Course_number	Prerequisite_numbe	
CS3380	CS3320	
CS3380	MATH2410	
CS3320	CS1310	

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION


Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

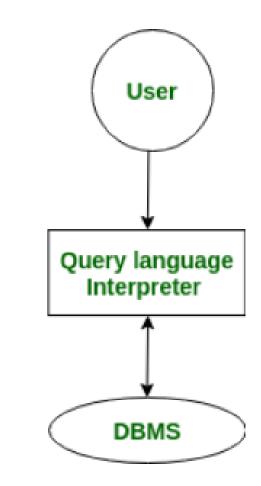
Main Characteristics of the Database Approach

- Self-describing nature of a database system:
 - A DBMS **catalog** stores the description of a particular database (e.g. data structures, types, and constraints)
 - The description is called **meta-data**.
 - This allows the DBMS software to work with different database applications.
- Insulation between programs and data:
 - Called program-data independence.
 - Allows changing data structures and storage organization without having to change the DBMS access programs.

Main Characteristics Cont.

- Support of multiple views of the data:
 - Each user may see a different view of the database, which describes only the data of interest to that user.

Cont..


- Data Abstraction:
 - A data model is used to hide storage details and present the users with a conceptual view of the database. Each user may see a different view of the database, which describes only the data of interest to that user.
- View Level
 - how the data should be shown to the user
- Conceptual Level
 - how the data is actually stored and structured
- Physical Level
 - tells us that where the data is actually stored i.e. it tells the actual location of the data that is being stored by the user.

Main Characteristics Cont.

- Sharing of data and multi-user transaction processing:
 - Allowing a set of **concurrent users** to retrieve from and to update the database.
 - Concurrency control within the DBMS guarantees that each transaction is correctly executed or aborted
 - *Recovery* subsystem ensures each completed transaction has its effect permanently recorded in the database. Similarly, each failed transaction is rolled back.
 - **OLTP** (Online Transaction Processing) is a major part of database applications. This allows hundreds of concurrent transactions to execute per second.

Database Users

- Users may be divided into
 - Those who actually use and control the database content, and those who design, develop and maintain database applications (called "Actors on the Scene"):
 - Database Administrators
 - Database Designers
 - Software Engineers
 - End-users
 - Those who design and develop the DBMS software and related tools, and the computer systems operators (called "Workers Behind the Scene").

Database Users (continued)

- Actors on the scene
 - Database administrators:
 - Responsible for authorizing access to the database, for coordinating and monitoring its use, acquiring software and hardware resources, controlling its use and monitoring efficiency of operations.

• Database Designers:

• Responsible to define the content, the structure, the constraints, and functions or transactions against the database. They must communicate with the end-users and understand their needs.

Categories of End-users

- Actors on the scene (continued)
 - End-users: They use the data for queries, reports and some of them update the database content. End-users can be categorized into:
 - **Casual**: access database occasionally when needed
 - Naive or Parametric: they make up a large section of the end-user population.
 - They use previously well-defined functions in the form of "canned transactions" against the database.
 - Examples are bank-tellers or reservation clerks who do this activity for an entire shift of operations.

Advantages of Using the Database Approach

- Controlling redundancy in data storage and in development and maintenance efforts.
 - Sharing of data among multiple users.
- Restricting unauthorized access to data.
- Providing persistent storage for program Objects
 - In Object-oriented DBMSs see Chapters 20-22
- Providing Storage Structures (e.g. indexes) for efficient Query Processing

Cont.

- Providing backup and recovery services.
- Providing multiple interfaces to different classes of users.
- Representing complex relationships among data.
- Enforcing integrity constraints on the database.
- Drawing Inferences and Actions from the stored data using deductive and active rules

Additional Implications of Using the Database Approach

- Potential for enforcing standards:
 - This is very crucial for the success of database applications in large organizations. **Standards** refer to data item names, display formats, screens, report structures, meta-data (description of data), Web page layouts, etc.
- Reduced application development time:
 - Incremental time to add each new application is reduced.

Cont.

- Flexibility to change data structures:
 - Database structure may evolve as new requirements are defined.
- Availability of current information:
 - Extremely important for on-line transaction systems such as airline, hotel, car reservations.
- Economies of scale:
 - Wasteful overlap of resources and personnel can be avoided by consolidating data and

applications across departments.

Historical Development of Database Technology

- Early Database Applications:
 - The Hierarchical and Network Models were introduced in mid 1960s and dominated during the seventies.
 - A bulk of the worldwide database processing still occurs using these models.
- Relational Model based Systems:
 - Relational model was originally introduced in 1970, was heavily researched and experimented with in IBM Research and several universities.
 - Relational DBMS Products emerged in the 1980s.

Cont.

- Object-oriented and emerging applications:
 - Object-Oriented Database Management Systems (OODBMSs) were introduced in late 1980s and early 1990s to cater to the need of complex data processing in CAD and other applications.
 - Their use has not taken off much.
 - Many relational DBMSs have incorporated object database concepts, leading to a new category called *object-relational* DBMSs (ORDBMSs)
 - *Extended relational* systems add further capabilities (e.g. for multimedia data, XML, and other data types)

Cont.

- Data on the Web and E-commerce Applications:
 - Web contains data in HTML (Hypertext markup language) with links among pages.
 - This has given rise to a new set of applications and E-commerce is using new standards like XML (eXtended Markup Language).
 - Script programming languages such as PHP and JavaScript allow generation of dynamic Web pages that are partially generated from a database
 - Also allow database updates through Web

pages

Extending Database Capabilities

- New functionality is being added to DBMSs in the following areas:
 - Scientific Applications
 - XML (eXtensible Markup Language)
 - Image Storage and Management
 - Audio and Video data management
 - Data Warehousing and Data Mining
 - Spatial data management
 - Time Series and Historical Data Management
- The above gives rise to new research and development in incorporating new data types, complex data structures, new operations and storage and indexing schemes in database systems.

When not to use a DBMS

- Main inhibitors (costs) of using a DBMS:
 - High initial investment and possible need for additional hardware.
 - Overhead for providing generality, security, concurrency control, recovery, and integrity functions.
- When a DBMS may be unnecessary:
 - If the database and applications are simple, well defined, and not expected to change.
 - If there are stringent real-time requirements that may not be met because of DBMS overhead.
 - If access to data by multiple users is not required.

Cont.

- When no DBMS may suffice:
 - If the database system is not able to handle the complexity of data because of modeling limitations
 - If the database users need special operations not supported by the DBMS.

Summary

- Types of Databases and Database Applications
- Basic Definitions
- Typical DBMS Functionality
- Example of a Database (UNIVERSITY)
- Main Characteristics of the Database Approach
- Database Users
- Advantages of Using the Database Approach
- When Not to Use Databases