
NMK20303 - Database System 
Concepts and Architecture

Chapter 2

Mohamed Elshaikh



Outline

• Data Models and Their Categories

• History of Data Models

• Schemas, Instances, and States

• Three-Schema Architecture

• Data Independence

• DBMS Languages and Interfaces

• Database System Utilities and Tools

• Centralized and Client-Server Architectures

• Classification of DBMSs

Slide 2- 2



Data Models

• Data Model:
• A set of concepts to describe the structure of a database, the operations for manipulating 

these structures, and certain constraints that the database should obey.

• Data Model Structure and Constraints:
• Constructs are used to define the database structure
• Constructs typically include elements (and their data types) as well as groups of elements 

(e.g. entity, record, table), and relationships among such groups
• Constraints specify some restrictions on valid data; these constraints must be enforced at all 

times

• Data Model Operations:
• These operations are used for specifying database retrievals and updates by referring 

to the constructs of the data model.
• Operations on the data model may include basic model operations (e.g. generic 

insert, delete, update) and user-defined operations (e.g. compute_student_gpa, 
update_inventory)

Slide 2- 3



Categories of Data Models
• Conceptual (high-level, semantic) data models:

• Provide concepts that are close to the way many users perceive data. 

• (Also called entity-based or object-based data models.)

• Physical (low-level, internal) data models:
• Provide concepts that describe details of how data is stored in the 

computer. These are usually specified in an ad-hoc manner through 
DBMS design and administration manuals

• Implementation (representational) data models:
• Provide concepts that fall between the above two, used by many 

commercial DBMS implementations (e.g. relational data models used in 
many commercial systems).

• Self-Describing Data Models:
• Combine the description of data with the data values. Examples include 

XML, key-value stores and some NOSQL systems.

Slide 2- 4



Schemas versus Instances

• Database Schema:
• The description of a database.
• Includes descriptions of the database structure, data types, 

and the constraints on the database.

• Schema Diagram:
• An illustrative display of (most aspects of) a database schema.

• Schema Construct:
• A component of the schema or an object within the schema, 

e.g., STUDENT, COURSE.

• Database State:
• The actual data stored in a database at a particular moment in 

time. This includes the collection of all the data in the 
database.

• Also called database instance (or occurrence or snapshot).
• The term instance is also applied to individual database components, 

e.g. record instance, table instance, entity instance

Slide 2- 5



Database Schema 
vs. Database State
• Database State: 

• Refers to the content of a database at a moment in time.

• Initial Database State:
• Refers to the database state when it is initially loaded into the system.

• Valid State:
• A state that satisfies the structure and constraints of the database.

• Distinction
• The database schema changes very infrequently. 
• The database state changes every time the database is updated. 

• Schema is also called intension.
• State is also called extension.

Slide 2- 6



Example Database Schema - database state

Slide 2- 7



Three-Schema Architecture

• Proposed to support DBMS characteristics of:
• Program-data independence.
• Support of multiple views of the data.

• Not explicitly used in commercial DBMS products

• Useful in explaining database system organization

• Defines DBMS schemas at three levels:
• Internal schema

• Describe physical storage structures and access paths (e.g indexes). 

• Typically uses a physical data model.

• Conceptual schema [Conceptual level]

• Describe the structure and constraints for the whole 
database for a community of users. 

• Uses a conceptual or an implementation data model.

• External schemas [external level]
• Describe various user views. 

• Usually uses the same data model as the conceptual 
schema.

Slide 2- 8



Three-Schema Architecture

• Mappings among schema levels are needed to transform requests 
and data. 
• Programs refer to an external schema, and are mapped by the DBMS to the 

internal schema for execution.

• Data extracted from the internal DBMS level is reformatted to match the 
user’s external view (e.g. formatting the results of an SQL query for display in 
a Web page)

Slide 2- 9



Data Independence

• Logical Data Independence: 
• The capacity to change the 

conceptual schema without having to 
change the external schemas and 
their associated application 
programs.

• Physical Data Independence:
• The capacity to change the internal 

schema without having to change the 
conceptual schema.

• For example, the internal schema 
may be changed when certain file 
structures are reorganized or new 
indexes are created to improve 
database performance

• When a schema at a lower level is 
changed, only the mappings
between this schema and higher-
level schemas need to be changed 
in a DBMS that fully supports data 
independence.

• The higher-level schemas 
themselves are unchanged.
• Hence, the application programs 

need not be changed since they refer 
to the external schemas.

Slide 2- 10



DBMS Languages

DBMS 
Languages

Data Definition 
Language (DDL)

Data 
Manipulation 

Language (DML)

• Data Manipulation Language 
(DML)
• High-Level or Non-procedural 

Languages: These include the 
relational language SQL
• May be used in a standalone way or 

may be embedded in a programming 
language

• Low Level or Procedural 
Languages:
• These must be embedded in a 

programming language



Data Definition Language (DDL): 

Data Definition Language 
(DDL):

Used by the DBA and 
database designers to 
specify the conceptual 
schema of a database.

In many DBMSs, the DDL is 
also used to define internal 

and external schemas 
(views).

In some DBMSs, separate 
storage definition 

language (SDL) and view 
definition language (VDL)
are used to define internal 

and external schemas.

SDL is typically realized via 
DBMS commands provided 
to the DBA and database 

designers.

• Data Definition Language (DDL): 
• Used by the DBA and database 

designers to specify the conceptual 
schema of a database.

• In many DBMSs, the DDL is also used 
to define internal and external 
schemas (views).

• In some DBMSs, separate storage 
definition language (SDL) and view 
definition language (VDL) are used to 
define internal and external schemas.
• SDL is typically realized via DBMS 

commands provided to the DBA and 
database designers



Data Manipulation Language (DML):

Data Manipulation Language 
(DML):

Used to specify database 
retrievals and updates

DML commands (data 
sublanguage) can be embedded

in a general-purpose 
programming language (host 
language), such as COBOL, C, 

C++, or Java.

A library of functions can also 
be provided to access the DBMS 
from a programming language

Alternatively, stand-alone DML 
commands can be applied 

directly (called a query 
language).

• Data Manipulation Language 
(DML):
• Used to specify database retrievals 

and updates
• DML commands (data sublanguage) 

can be embedded in a general-
purpose programming language (host 
language), such as COBOL, C, 
C++, or Java.
• A library of functions can also be 

provided to access the DBMS from a 
programming language

• Alternatively, stand-alone DML 
commands can be applied directly 
(called a query language).



DBMS Interfaces

• Stand-alone query language 
interfaces
• Example: Entering SQL queries at the 

DBMS interactive SQL interface (e.g. 
SQL*Plus in ORACLE)

• Programmer interfaces for 
embedding DML in programming 
languages

• User-friendly interfaces
• Menu-based, forms-based, graphics-

based, etc.

• Mobile Interfaces:interfaces
allowing users to perform 
transactions using mobile apps D
B

M
S 

In
te

rf
ac

es Stand-alone

Programmer 
interfaces 

User-friendly 
interfaces

Mobile Interfaces

Slide 2- 14



DBMS Programming Language Interfaces

• Programmer interfaces for embedding DML in a programming 
languages:
• Embedded Approach: e.g embedded SQL (for C, C++, etc.), SQLJ (for Java)

• Procedure Call Approach: e.g. JDBC for Java, ODBC (Open Databse Connectivity) for other 
programming languages as API’s (application programming interfaces)

• Database Programming Language Approach: e.g. ORACLE has PL/SQL, a programming 
language based on SQL; language incorporates SQL and its data types as integral components

• Scripting Languages: PHP (client-side scripting) and Python (server-side scripting) are used to 
write database programs.

Slide 2- 15



User-Friendly DBMS Interfaces

• Menu-based (Web-based), popular for browsing on the web

• Forms-based, designed for naïve users used to filling in 
entries on a form

• Graphics-based 
• Point and Click, Drag and Drop, etc.

• Specifying a query on a schema diagram

• Natural language: requests in written English

• Combinations of the above:
• For example, both menus and forms used extensively in Web 

database interfaces

Slide 2- 16



Other DBMS Interfaces

• Natural language: free text as a query

• Speech : Input query and Output response

• Web Browser with keyword search

• Parametric interfaces, e.g., bank tellers using function keys.

• Interfaces for the DBA:
• Creating user accounts, granting authorizations

• Setting system parameters

• Changing schemas or access paths

Slide 2- 17



Database System Utilities

• To perform certain functions such as:
• Loading data stored in files into a database. Includes data conversion tools.

• Backing up the database periodically on tape.

• Reorganizing database file structures.

• Performance monitoring utilities.

• Report generation utilities.

• Other functions, such as sorting, user monitoring, data compression, etc.

Slide 2- 18



Other Tools

• Data dictionary / repository:
• Used to store schema descriptions and other information such as design 

decisions, application program descriptions, user information, usage 
standards, etc.

• Active data dictionary is accessed by DBMS software and users/DBA.

• Passive data dictionary is accessed by users/DBA only.

Slide 2- 19



Chapter Summary

• Data Models and Their Categories
• Schemas, Instances, and States
• Three-Schema Architecture
• Data Independence
• DBMS Languages and Interfaces
• Database System Utilities and Tools
• Database System Environment
• Centralized and Client-Server Architectures
• Classification of DBMSs
• History of Data Models

Slide 2- 20


