
The Database Relational Model

Lecture 5

Ch05

Mohamed Elshaikh

NMK20303 - Database Management Systems

Slide 5- 2

Chapter Outline

• Relational Model Concepts

• Relational Model Constraints and Relational Database Schemas

• Update Operations and Dealing with Constraint Violations

Slide 5- 3

Relational Model Concepts

• The relational Model of Data is based on the concept of a Relation
• The strength of the relational approach to data management comes from the formal

foundation provided by the theory of relations

• We review the essentials of the formal relational model in this chapter

• In practice, there is a standard model based on SQL – this is described in Chapters
8 and 9

• Note: There are several important differences between the formal model and the
practical model, as we shall see

Slide 5- 4

Relational Model Concepts

• A Relation is a mathematical concept based on the ideas of sets

• The model was first proposed by Dr. E.F. Codd of IBM Research in
1970 in the following paper:
• "A Relational Model for Large Shared Data Banks," Communications of the

ACM, June 1970

• The above paper caused a major revolution in the field of database
management and earned Dr. Codd the coveted ACM Turing Award

Slide 5- 5

Informal Definitions

• Informally, a relation looks like a table of values.

• A relation typically contains a set of rows.

• The data elements in each row represent certain facts that correspond to a real-
world entity or relationship
• In the formal model, rows are called tuples

• Each column has a column header that gives an indication of the meaning of the
data items in that column
• In the formal model, the column header is called an attribute name (or just attribute)

Example of a Relation
• A relation looks like a table of values (A relation typically contains a set of rows).

• The data elements in each row represent certain facts that correspond to a real-
world entity or relationship
• In the formal model, rows are called tuples

• Each column has a column header that gives an indication of the meaning of the
data items in that column
• In the formal model, the column header is called an attribute name (or just attribute)

Slide 5- 6

Slide 5- 7

Informal Definitions

• Key of a Relation:
• Each row has a value of a data item (or set of items) that uniquely

identifies that row in the table
• Called the key

• In the STUDENT table, SSN is the key

• Sometimes row-ids or sequential numbers are assigned as keys to identify
the rows in a table
• Called artificial key or surrogate key

Slide 5- 8

Formal Definitions - Schema

• The Schema (or description) of a Relation:
• Denoted by R(A1, A2,An)

• R is the name of the relation

• The attributes of the relation are A1, A2, ..., An

• Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)
• CUSTOMER is the relation name

• Defined over the four attributes: Cust-id, Cust-name, Address, Phone#

• Each attribute has a domain or a set of valid values.
• For example, the domain of Cust-id is 6 digit numbers.

Slide 5- 9

Formal Definitions - Tuple

• A tuple is an ordered set of values (enclosed in angled brackets ‘< … >’)

• Each value is derived from an appropriate domain.

• A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for
example:
• <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

• This is called a 4-tuple as it has 4 values

• A tuple (row) in the CUSTOMER relation.

• A relation is a set of such tuples (rows)

Slide 5- 10

Formal Definitions - Domain

• A domain has a logical definition:

• Example: “USA_phone_numbers” are the set of 10 digit phone numbers valid in the U.S.

• A domain also has a data-type or a format defined for it.

• The USA_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit.

• Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd
mm,yyyy etc.

• The attribute name designates the role played by a domain in a relation:

• Used to interpret the meaning of the data elements corresponding to that attribute

• Example: The domain Date may be used to define two attributes named “Invoice-date” and
“Payment-date” with different meanings

Slide 5- 11

Formal Definitions - State

• The relation state is a subset of the Cartesian product of the domains
of its attributes
• each domain contains the set of all possible values the attribute can take.

• Example: attribute Cust-name is defined over the domain of character
strings of maximum length 25
• dom(Cust-name) is varchar(25)

• The role these strings play in the CUSTOMER relation is that of the
name of a customer.

Slide 5- 12

Formal Definitions - Summary

• Formally,
• Given R(A1, A2,, An)

• r(R) dom (A1) X dom (A2) XX dom(An)

• R(A1, A2, …, An) is the schema of the relation

• R is the name of the relation

• A1, A2, …, An are the attributes of the relation

• r(R): a specific state (or "value" or “population”) of relation R – this is a set of
tuples (rows)
• r(R) = {t1, t2, …, tn} where each ti is an n-tuple

• ti = <v1, v2, …, vn> where each vj element-of dom(Aj)

Slide 5- 13

Formal Definitions - Example

• Let R(A1, A2) be a relation schema:
• Let dom(A1) = {0,1}

• Let dom(A2) = {a,b,c}

• Then: dom(A1) X dom(A2) is all possible combinations:
{<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }

• The relation state r(R) dom(A1) X dom(A2)

• For example: r(R) could be {<0,a> , <0,b> , <1,c> }
• this is one possible state (or “population” or “extension”) r of the relation R, defined

over A1 and A2.

• It has three 2-tuples: <0,a> , <0,b> , <1,c>

Slide 5- 14

Definition Summary

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column

Values

Domain

Row Tuple

Table Definition Schema of a Relation

Populated Table State of the Relation

Slide 5- 15

Example – A relation STUDENT

Slide 5- 16

Characteristics Of Relations

• Ordering of tuples in a relation r(R):

• The tuples are not considered to be ordered, even though they
appear to be in the tabular form.

• Ordering of attributes in a relation schema R (and of values within
each tuple):

• We will consider the attributes in R(A1, A2, ..., An) and the values
in t=<v1, v2, ..., vn> to be ordered .
• (However, a more general alternative definition of relation does not require this

ordering).

Slide 5- 17

Same state as previous Figure (but with
different order of tuples)

Slide 5- 18

Characteristics Of Relations

• Values in a tuple:
• All values are considered atomic (indivisible).

• Each value in a tuple must be from the domain of the attribute for that
column
• If tuple t = <v1, v2, …, vn> is a tuple (row) in the relation state r of R(A1, A2, …, An)

• Then each vi must be a value from dom(Ai)

• A special null value is used to represent values that are unknown or
inapplicable to certain tuples.

Slide 5- 19

Characteristics Of Relations

• Notation:
• We refer to component values of a tuple t by:

• t[Ai] or t.Ai

• This is the value vi of attribute Ai for tuple t

• Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the values of
attributes Au, Av, ..., Aw, respectively in t

Slide 5- 20

Relational Integrity Constraints

• Constraints are conditions that must hold on all valid relation states.

• There are three main types of constraints in the relational model:
• Key constraints

• Entity integrity constraints

• Referential integrity constraints

• Another implicit constraint is the domain constraint
• Every value in a tuple must be from the domain of its attribute (or it could be null, if

allowed for that attribute)

Slide 5- 21

Key Constraints

• Superkey of R:
• Is a set of attributes SK of R with the following condition:

• No two tuples in any valid relation state r(R) will have the same value for SK

• That is, for any distinct tuples t1 and t2 in r(R), t1[SK] t2[SK]

• This condition must hold in any valid state r(R)

• Key of R:
• A "minimal" superkey

• That is, a key is a superkey K such that removal of any attribute from K results in a set
of attributes that is not a superkey (does not possess the superkey uniqueness
property)

Slide 5- 22

Key Constraints (continued)

• Example: Consider the CAR relation schema:
• CAR(State, Reg#, SerialNo, Make, Model, Year)

• CAR has two keys:
• Key1 = {State, Reg#}

• Key2 = {SerialNo}

• Both are also superkeys of CAR

• {SerialNo, Make} is a superkey but not a key.

• In general:
• Any key is a superkey (but not vice versa)

• Any set of attributes that includes a key is a superkey

• A minimal superkey is also a key

Slide 5- 23

Key Constraints (continued)

• If a relation has several candidate keys, one is chosen arbitrarily to be the
primary key.
• The primary key attributes are underlined.

• Example: Consider the CAR relation schema:
• CAR(State, Reg#, SerialNo, Make, Model, Year)
• We chose SerialNo as the primary key

• The primary key value is used to uniquely identify each tuple in a relation
• Provides the tuple identity

• Also used to reference the tuple from another tuple
• General rule: Choose as primary key the smallest of the candidate keys (in terms of

size)
• Not always applicable – choice is sometimes subjective

Slide 5- 24

CAR table with two candidate keys – LicenseNumber chosen as
Primary Key

Slide 5- 25

Relational Database Schema

• Relational Database Schema:
• A set S of relation schemas that belong to the same database.

• S is the name of the whole database schema

• S = {R1, R2, ..., Rn}

• R1, R2, …, Rn are the names of the individual relation schemas within the
database S

• Following slide shows a COMPANY database schema with 6 relation
schemas

Slide 5- 26

COMPANY Database Schema

Slide 5- 27

Entity Integrity

• Entity Integrity:

• The primary key attributes PK of each relation schema R in S cannot have null
values in any tuple of r(R).
• This is because primary key values are used to identify the individual tuples.

• t[PK] null for any tuple t in r(R)

• If PK has several attributes, null is not allowed in any of these attributes

• Note: Other attributes of R may be constrained to disallow null values, even
though they are not members of the primary key.

Slide 5- 28

Referential Integrity

• A constraint involving two relations
• The previous constraints involve a single relation.

• Used to specify a relationship among tuples in two relations:
• The referencing relation and the referenced relation.

Slide 5- 29

Referential Integrity

• Tuples in the referencing relation R1 have attributes FK (called
foreign key attributes) that reference the primary key attributes PK of
the referenced relation R2.
• A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

• A referential integrity constraint can be displayed in a relational
database schema as a directed arc from R1.FK to R2.

Slide 5- 30

Referential Integrity (or foreign key)
Constraint
• Statement of the constraint

• The value in the foreign key column (or columns) FK of the the referencing
relation R1 can be either:
• (1) a value of an existing primary key value of a corresponding primary key PK in the

referenced relation R2, or

• (2) a null.

• In case (2), the FK in R1 should not be a part of its own primary key.

Slide 5- 31

Displaying a relational database schema and
its constraints
• Each relation schema can be displayed as a row of attribute names

• The name of the relation is written above the attribute names

• The primary key attribute (or attributes) will be underlined

• A foreign key (referential integrity) constraints is displayed as a directed arc
(arrow) from the foreign key attributes to the referenced table
• Can also point the the primary key of the referenced relation for clarity

• Next slide shows the COMPANY relational schema diagram

Slide 5- 32

Referential Integrity Constraints for COMPANY database

Slide 5- 33

Other Types of Constraints

• Semantic Integrity Constraints:
• based on application semantics and cannot be expressed by the model per se

• Example: “the max. no. of hours per employee for all projects he or she works
on is 56 hrs per week”

• A constraint specification language may have to be used to express
these

• SQL-99 allows triggers and ASSERTIONS to express for some of these

Slide 5- 34

Populated database state

• Each relation will have many tuples in its current relation state

• The relational database state is a union of all the individual relation states

• Whenever the database is changed, a new state arises

• Basic operations for changing the database:
• INSERT a new tuple in a relation

• DELETE an existing tuple from a relation

• MODIFY an attribute of an existing tuple

• Next slide shows an example state for the COMPANY database

Slide 5- 35

Populated database state for COMPANY

Slide 5- 36

Update Operations on Relations

• INSERT a tuple.

• DELETE a tuple.

• MODIFY a tuple.

• Integrity constraints should not be violated by the update operations.

• Several update operations may have to be grouped together.

• Updates may propagate to cause other updates automatically. This
may be necessary to maintain integrity constraints.

Slide 5- 37

Update Operations on Relations

• In case of integrity violation, several actions can be taken:
• Cancel the operation that causes the violation (RESTRICT or REJECT option)

• Perform the operation but inform the user of the violation

• Trigger additional updates so the violation is corrected (CASCADE option, SET
NULL option)

• Execute a user-specified error-correction routine

Slide 5- 38

Possible violations for each operation

• INSERT may violate any of the constraints:
• Domain constraint:

• if one of the attribute values provided for the new tuple is not of the specified attribute
domain

• Key constraint:
• if the value of a key attribute in the new tuple already exists in another tuple in the

relation

• Referential integrity:
• if a foreign key value in the new tuple references a primary key value that does not exist

in the referenced relation

• Entity integrity:
• if the primary key value is null in the new tuple

Slide 5- 39

Possible violations for each operation

• DELETE may violate only referential integrity:
• If the primary key value of the tuple being deleted is referenced from other tuples in

the database
• Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 8 for

more details)
• RESTRICT option: reject the deletion

• CASCADE option: propagate the new primary key value into the foreign keys of the
referencing tuples

• SET NULL option: set the foreign keys of the referencing tuples to NULL

• One of the above options must be specified during database design for each foreign
key constraint

Slide 5- 40

Possible violations for each operation

• UPDATE may violate domain constraint and NOT NULL constraint on an attribute
being modified

• Any of the other constraints may also be violated, depending on the attribute
being updated:
• Updating the primary key (PK):

• Similar to a DELETE followed by an INSERT

• Need to specify similar options to DELETE

• Updating a foreign key (FK):
• May violate referential integrity

• Updating an ordinary attribute (neither PK nor FK):
• Can only violate domain constraints

Slide 5- 41

Summary

• Presented Relational Model Concepts
• Definitions

• Characteristics of relations

• Discussed Relational Model Constraints and Relational Database Schemas
• Domain constraints’

• Key constraints

• Entity integrity

• Referential integrity

• Described the Relational Update Operations and Dealing with Constraint
Violations

Slide 5- 42

In-Class Exercise

(Taken from Exercise 5.15)

Consider the following relations for a database that keeps track of student

enrollment in courses and the books adopted for each course:

STUDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book_ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this

schema.

