NMK20303 - Database Management Systems

Basic SQL

Lecture 6 [Chapter 6]

Mohamed Elshaikh

Chapter 6 Outline

- SQL Data Definition and Data Types
- Specifying Constraints in SQL
- Basic Retrieval Queries in SQL
- INSERT, DELETE, and UPDATE Statements in SQL
- Additional Features of SQL

Basic SQL

- SQL language
 - Considered one of the major reasons for the commercial success of relational databases
- SQL
 - The origin of SQL is relational predicate calculus called tuple calculus (see Ch.8) which was proposed initially as the language SQUARE.
 - SQL Actually comes from the word "SEQUEL" which was the original term used in the paper: "SEQUEL TO SQUARE" by Chamberlin and Boyce. IBM could not copyright that term, so they abbreviated to SQL and copyrighted the term SQL.
 - Now popularly known as "Structured Query language".
 - SQL is an informal or practical rendering of the relational data model with syntax

SQL Data Definition, Data Types, Standards

- Terminology:
 - Table, row, and column used for relational model terms relation, tuple, and attribute
- CREATE statement
 - Main SQL command for data definition
- The language has features for : Data definition, Data Manipulation, Transaction control (Transact-SQL, Ch. 20), Indexing (Ch.17), Security specification (Grant and Revoke- see Ch.30), Active databases (Ch.26), Multi-media (Ch.26), Distributed databases (Ch.23) etc.

SQL Standards

- SQL has gone through many standards: starting with SQL-86 or SQL 1.A. SQL-92 is referred to as SQL-2.
- Later standards (from SQL-1999) are divided into **core** specification and specialized **extensions**. The extensions are implemented for different applications such as data mining, data warehousing, multimedia etc.
- SQL-2006 added XML features (Ch. 13); In 2008 they added Objectoriented features (Ch. 12).
- SQL-3 is the current standard which started with SQL-1999. It is not fully implemented in any RDBMS.

Schema and Catalog Concepts in SQL

 We cover the basic standard SQL syntax – there are variations in existing RDBMS systems

SQL schema

- Identified by a schema name
- Includes an **authorization identifier** and **descriptors** for each element
- Schema elements include
 - Tables, constraints, views, domains, and other constructs
- Each statement in SQL ends with a **semicolon**

Schema and Catalog Concepts in SQL (cont'd.)

• CREATE SCHEMA statement

- CREATE SCHEMA COMPANY AUTHORIZATION 'Jsmith';
- Catalog
 - Named collection of schemas in an SQL environment
- SQL also has the concept of a cluster of catalogs.

The CREATE TABLE Command in SQL

- Specifying a new relation
 - Provide name of table
 - Specify attributes, their types and initial constraints
- Can optionally specify schema:
 - CREATE TABLE COMPANY.EMPLOYEE ...

or

• CREATE TABLE EMPLOYEE ...

The CREATE TABLE Command in SQL (cont'd.)

• Base tables (base relations)

• Relation and its tuples are actually created and stored as a file by the DBMS

• Virtual relations (views)

• Created through the CREATE VIEW statement. Do not correspond to any physical file.

COMPANY relational database schema (Fig. 5.7)

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
DEPARTN	IENT]			
Dname	Dnumb	oer Mgr_	ssn N	/lgr_start_	date				
	A A								
DEPT_LO	CATION	S							
Dnumbe	r Dloc	cation							
PROJECT									
Pname	Pnumb	per Ploca	ation	Dnum					
WORKS_	ON								
Essn	Pno	Hours							
DEPEND	ENT								
Essn	Depend	lent_name	Sex	Bdate	Relations	ship			
1									

One possible database state for the COMPANY relational database schema (Fig. 5.6)

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	A	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Slide 6- 12

One possible database state for the COMPANY relational database schema – continued (Fig. 5.6)

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Slide 6-13

SQL CREATE TABLE data definition statements for defining the COMPANY schema from Figure 5.7 (Fig. 6.1)

CREATE	TABLE EMPLOYEE			
	(Fname	VARCHAR(15)	NOT NULL,	
	Minit	CHAR,		
	Lname	VARCHAR(15)	NOT NULL,	
	Ssn	CHAR(9)	NOT NULL,	
	Bdate	DATE,		
	Address	VARCHAR(30),		
	Sex	CHAR,		
	Salary	DECIMAL(10,2),		
	Super_ssn	CHAR(9),		
	Dno	INT	NOT NULL,	
	PRIMARY KEY (Ssn),			
CREATE	TABLE DEPARTMENT			
	(Dname	VARCHAR(15)	NOT NULL,	
	Dnumber	INT	NOT NULL,	
	Mgr_ssn	CHAR(9)	NOT NULL,	
	Mgr_start_date	DATE,		
	PRIMARY KEY (Dnumber),			
	UNIQUE (Dname),			
	FOREIGN KEY (Mgr_ssn) REFER	RENCES EMPLOYEE(Ssn));		
CREATE	TABLE DEPT_LOCATIONS			
	(Dnumber	INT	NOT NULL,	
	Dlocation	VARCHAR(15)	NOT NULL,	
	PRIMARY KEY (Dnumber, Dlocat	tion),		
	FOREIGN KEY (Dnumber) REFE	RENCES DEPARTMENT(Dnumber));	continued on I

n next slide

SQL CREATE TABLE data definition statements for defining the COMPANY schema from Figure 5.7 (Fig. 6.1)-continued

CREATE TABLE PROJECT

UNLATE	(Pname	VARCHAR(15)	NOT NULL,
	Pnumber	INT	NOT NULL,
	Plocation	VARCHAR(15),	
	Dnum	INT	NOT NULL,
	PRIMARY KEY (Pnumber),		
	UNIQUE (Pname),		
	FOREIGN KEY (Dnum) REFEREN	ICES DEPARTMENT(Dnumber));	
CREATE	TABLE WORKS_ON		
	(Essn	CHAR(9)	NOT NULL,
	Pno	INT	NOT NULL,
	Hours	DECIMAL(3,1)	NOT NULL,
	PRIMARY KEY (Essn, Pno),		
	FOREIGN KEY (Essn) REFEREN	CES EMPLOYEE(Ssn),	
	FOREIGN KEY (Pno) REFERENCE	ES PROJECT(Pnumber));	
CREATE	TABLE DEPENDENT		
	(Essn	CHAR(9)	NOT NULL,
	Dependent_name	VARCHAR(15)	NOT NULL,
	Sex	CHAR,	
	Bdate	DATE,	
	Relationship	VARCHAR(8),	
	PRIMARY KEY (Essn, Dependent	_name),	
	FOREIGN KEY (Essn) REFEREN	CES EMPLOYEE(Ssn));	

Attribute Data Types and Domains in SQL

• Basic data types

- Numeric data types
 - Integer numbers: INTEGER, INT, and SMALLINT
 - Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION

• Character-string data types

- **Fixed length:** CHAR(*n*), CHARACTER(*n*)
- Varying length: VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n)

Attribute Data Types and Domains in SQL (cont'd.)

• Bit-string data types

- Fixed length: BIT (n)
- Varying length: BIT VARYING (n)
- Boolean data type
 - Values of TRUE or FALSE or NULL
- DATE data type
 - Ten positions
 - Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD
 - Multiple mapping functions available in RDBMSs to change date formats

Attribute Data Types and Domains in SQL (cont'd.)

- Additional data types
 - Timestamp data type
 - Includes the <code>DATE</code> and <code>TIME</code> fields
 - Plus a minimum of six positions for decimal fractions of seconds
 - Optional WITH TIME ZONE qualifier
 - INTERVAL data type
 - Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp
 - DATE, TIME, Timestamp, INTERVAL data types can be cast or converted to string formats for comparison.

Attribute Data Types and Domains in SQL (cont'd.) • Domain

- Name used with the attribute specification
- Makes it easier to change the data type for a domain that is used by numerous attributes
- Improves schema readability
- Example:
 - CREATE DOMAIN SSN_TYPE AS CHAR(9);
- TYPE
 - User Defined Types (UDTs) are supported for objectoriented applications. (See Ch.12) Uses the command: CREATE TYPE

Specifying Constraints in SQL

Basic constraints:

- Relational Model has 3 basic constraint types that are supported in SQL:
 - Key constraint: A primary key value cannot be duplicated
 - Entity Integrity Constraint: A primary key value cannot be null
 - **Referential integrity** constraints : The "foreign key" must have a value that is already present as a primary key, or may be null.

Specifying Attribute Constraints

Other Restrictions on attribute domains:

Default value of an attribute

•DEFAULT <value>

•NULL is not permitted for a particular attribute (NOT NULL)

• CHECK clause

•Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

Specifying Key and Referential Integrity Constraints

- **PRIMARY KEY** clause
 - Specifies one or more attributes that make up the primary key of a relation
 - Dnumber INT PRIMARY KEY;
- UNIQUE clause
 - Specifies alternate (secondary) keys (called CANDIDATE keys in the relational model).
 - Dname VARCHAR(15) UNIQUE;

Specifying Key and Referential Integrity Constraints (cont'd.)

- FOREIGN KEY clause
 - Default operation: reject update on violation
 - Attach referential triggered action clause
 - Options include SET NULL, CASCADE, and SET DEFAULT
 - Action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON DELETE and ON UPDATE
 - CASCADE option suitable for "relationship" relations

Giving Names to Constraints

- Using the Keyword **CONSTRAINT**
 - Name a constraint
 - Useful for later altering

Default attribute values and referential integrity triggered action specification (Fig. 6.2)

CREATE TABLE EMPLOYEE

(... , Dno INT NOT NULL **DEFAULT** 1, **CONSTRAINT** EMPPK PRIMARY KEY (Ssn). **CONSTRAINT** EMPSUPERFK FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) **ON DELETE** SET NULL **ON UPDATE** CASCADE, **CONSTRAINT** EMPDEPTFK FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber) **ON DELETE** SET DEFAULT **ON UPDATE** CASCADE); **CREATE TABLE DEPARTMENT** (... , NOT NULL DEFAULT '888665555', Mgr_ssn CHAR(9) **CONSTRAINT** DEPTPK **PRIMARY KEY**(Dnumber), **CONSTRAINT** DEPTSK UNIQUE (Dname), **CONSTRAINT** DEPTMGRFK FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) **ON DELETE** SET DEFAULT **ON UPDATE** CASCADE); **CREATE TABLE DEPT LOCATIONS** (... , **PRIMARY KEY** (Dnumber, Dlocation), FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) ON DELETE CASCADE **ON UPDATE** CASCADE):

Specifying Constraints on Tuples Using CHECK

- Additional Constraints on individual tuples within a relation are also possible using CHECK
- CHECK clauses at the end of a CREATE TABLE statement
 - Apply to each tuple individually
 - CHECK (Dept_create_date <= Mgr_start_date);

Summary

- SQL
 - A Comprehensive language for relational database management
 - Data definition, queries, updates, constraint specification, and view definition
- Covered :
 - Data definition commands for creating tables
 - Commands for constraint specification