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Unconstrained minimization

• In previous slide, we discovered that to maximize the margin we need 
to minimize the norm of w.

• It means we need to solve the following optimization problem:
Minimize in (w,b) ∥w∥

subject to yi(w⋅xi+b)≥1
(for any i=1,…,n)

• The first thing to notice about this optimization problem is that it has 
constraints. They are defined by the line which begins with "subject 
to".  You may think that there is only one constraint, but there is, in 
fact, n constraints. (this is because of the last line "for any"...)



Unconstrained minimization

• Unconstrained minimization

• Before tackling such a complicated problem, let us start with a 
simpler one. We will first look at how to solve an unconstrained 
optimization problem, more specifically, we will study unconstrained 
minimization. 

• That is the problem of finding which input makes a function return its 
minimum. (Note: in the SVM case,  we wish to minimize the function 
computing the norm of w, we could call it f and write it f(w)=∥w∥).

• Let us consider a point  x∗ (you should read it "x star", we just add the 
star so that you know we are talking about a specific variable, and not 
about any x).



Unconstrained minimization

• Theorem:

• Let f:Ω→R be a continuously twice differentiable function 
at x∗.

• If x∗ satisfies ∇f(x∗)=0 and ∇2f(x∗) is positive definite then 
x∗ is a local minimum.

• The hard truth with such a theorem is that although being 
extremely concise, it is totally impossible to understand 
without some background information. What is ∇f(x∗)=0 ? 
What is ∇2f(x∗)?  What do we mean by positive definite?



Unconstrained minimization
• Theorem (with more details):
• If x∗ satisfies:

f has a zero gradient at x∗:
∇f(x∗)=0

and
the Hessian of f at x∗ is positive definite:

z⊺((∇2f(x∗))z>0,∀z∈Rn

• where

• ∇2f(x)=
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• then x∗ is a local minimum.



Unconstrained minimization

• What does this all mean?
• Let us examine this definition step by step.

• Step 1:

• Let f:Ω→R be a continuously twice differentiable function at x∗.

• First, we introduce a function which we call f, this function takes its values 
from a set Ω (omega) and returns a real number. There is the first difficulty 
here because we do not state what  Ω is, but we will be able to guess it in 
the next line. This function f should be continuous and twice differentiable, 
or the rest of the definition will not be true.



Unconstrained minimization

• Step 2:

• x∗ is a local minimum of f(x) if and only if:

• We want to find a value to give to f for it to produce its minimum. We simply 
name this value x∗.

• From the notation we can tell two things:

• x∗ is written in bold, so it is a vector. It means that f is a multivariate function.

• As a result, the set Ω we saw earlier is the set from which we pick values to give 
to f. It means that the set Ω is a set of vectors and x∗∈ Ω ("x stars belongs to 
Omega")



Unconstrained minimization

• Step 3:

• f has a zero gradient at x∗

• This one is the first condition which must hold if we want x∗ to be a local 
minimum of f(x). We must check that the gradient of the function f at x∗ is 
equal to zero. 

• What is the gradient? Just think of it as a derivative on steroids.

• Definition:  "the gradient is a generalization of the usual concept of 
derivative of a function in one dimension to a function in several 
dimensions" (Wikipedia)



Unconstrained minimization

• A gradient is, in fact, the same thing as a derivative, but for functions like f 
which take vectors as input. 

• That is why we wanted f to be a differentiable function in the first place, if 
it is not the case we cannot compute the gradient, and we are stuck.

• In calculus, when we want to study a function, we often study the sign of 
its derivative. 

• It allows you to determine if the function is increasing or decreasing and to 
identify minimum and maximum. 

• By setting the derivative to zero, we can find the "critical points" of the 
function at which it reaches a maximum or a minimum. 

• When we work with functions having more variable, we need to set each 
partial derivative to zero.



Unconstrained minimization

• It turns out, the gradient of a function is a vector containing each of 
its partial derivatives. 

• By studying the sign of the gradient, we can gather important pieces 
of information about the function. 

• In this case, checking if the gradient equals zero for x∗ allow us to 
determine if x∗ is a critical point (and that the function f possibly has 
a minimum at this point). 

• (Note: Checking if the gradient equals zero at a point means checking 
that each partial derivative equals zero for this point)



Unconstrained minimization

• The gradient of a function is 
denoted by the symbol ∇ (nabla).

• The line

• ∇f(x∗)=0

• is just a repetition of "f has a zero 
gradient at x∗" in mathematical 
notation.

• For a vector x∗(x1,x2,x3),  ∇f(x∗)=0  
means:



Unconstrained minimization

• Step 4:

• the Hessian of f at x∗ is positive definite

• That is where most people get lost. This single sentence requires a lot 
of backgrounds. 

• You need to know:

• that the Hessian is a matrix of second-order partial derivatives

• how we can tell if a matrix is positive definite



The Hessian matrix

• The Hessian is a matrix, and we give it a name. 

• We could call it H but instead we call it ∇2f(x)  which is more explicit.  

• We keep the symbol ∇ used for the gradient, and add a 2 to denote 
we the fact that this time we are talking about second-order partial 
derivative. 

• Then we specify the name of the function (f) from which we will 
compute these derivates. 

• By writing f(x) we know that f takes a vector x as input and that the 
Hessian is computed for a given x.



Unconstrained minimization

• To sum up, we need to compute 
a matrix called the Hessian 
matrix for  x∗.

• So we take the function f, we 
take the value of  x∗ and we 
compute the value for each cell 
of the matrix using the following 
formula:

• Eventually we get the Hessian 
matrix and it contains all the 
numbers we have computed.



Unconstrained minimization

• Let us look at the definition to see if we understand it well:

• Definition: In mathematics, the Hessian matrix or Hessian is a square 
matrix of second-order partial derivatives of a scalar-valued function. 
It describes the local curvature of a function of many variables. 
(Wikipedia)

• (Note: A scalar valued function is a function that takes one or more 
values but returns a single value. In our case f is a scalar valued 
function.)



Positive definite

• Now that we have the Hessian matrix, we want to know if it is positive 
definite at  x∗.

• Definition: 

• A symmetric matrix A  is called positive definite if x⊺Ax>0, for all x∈Rn. 

• This time, we note that once again we were given the definition in the first 
place. It was just a little bit harder to read because of our notational 
choice. If we replace A by ∇2f(x∗) and x by z we get exactly the formula:

• z⊺((∇2f(x∗))z>0, ∀z∈Rn

• The problem with this definition is that it is talking about a symmetric 
matrix.  A symmetric matrix is a square matrix this is equal to its transpose.



Unconstrained minimization

• The Hessian matrix is square, but is it symmetric?

• Luckily for us yes!

• "if the second derivatives of f are all continuous in a neighborhood D, 
then the Hessian of f is a symmetric matrix throughout D" (Wikipedia)

• But even with the definition, we still don't know how to check that 
the Hessian is positive definite.  That is because the formula 
z⊺((∇2f(x∗))z>0, is for all z in Rn

• We can't try this formula for all z in Rn!



Unconstrained minimization

• That is why we will use the following theorem:

• Theorem: 

• The following statements are equivalent:
• The symmetric matrix A is positive definite.
• All eigenvalues of A are positive.
• All the leading principal minors of A are positive.
• There exists nonsingular square matrix B such that A=B⊺B

• So we have three ways of checking that a matrix is positive definite:
• By computing its eigenvalues and checking they are positive.
• By computing its leading principal minors and checking they are positive.
• By finding a nonsingular square matrix B such that A=B⊺B.



Computing the leading principal minors
Minors: To compute the minor Mij of a matrix we remove the ith line and the jth column, and
compute the determinant of the remaining matrix.

• Example: : Let us consider the following 3 by 3 matrix:

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

• To compute the minor M12 of this matrix we remove the line number 1 and the
column number 2. We get:

• so we compute the determinant of:
𝑑 𝑓
𝑔 𝑖

• which is : di−fg



Computing the leading principal minors

• Principal minors

• A minor Mij is called a principal minor when i=j.

• For our 3x3 matrix, the principal minors are :

• M11=ei−fh
• M22=ai−cg
• M33=ae−bd

• But that is not all ! Indeed, minors also have what we call an order.



Computing the leading principal minors

• Definition:

• A minor of A of order k is principal if it is obtained by deleting n−k
rows and the n−k columns with the same numbers.

• In our previous example, the matrix is 3×3 so n=3 and we deleted 1
line, so we computed principal minors of order 2.

• There are
𝒏

𝒌
□ principal minors of order k, and we write Δk for any of

the principal minors of order k.



Computing the leading principal minors

• To sum-up:
• Δ0: does not exist because if we

remove three lines and three
columns we have deleted our
matrix!

• Δ1: We delete (3-1) = 2 lines and
2 columns with the same
number.

• So we remove lines 1 and 2 and
column 1 and 2.



Computing the leading principal minors

• It means that one of the principal minors of order 1 is i. Let us find
the others:

• We delete lines 2 and 3 and column 2 and 3 and we get a.
• We delete lines 1 and 3 and column 1 and 3 and we get e

• Δ2: is what we have seen before:
• M11=ei−fh
• M22=ai−cg
• M33=ae−bd

• Δ3: We delete nothing. So it is the determinant of the matrix :
• aei+bfg+cdh−ceg−bdi−afh.



Leading principal minor

• Definition:
• The leading principal minor of A of order k is the minor of order k obtained by deleting the

last n−k rows and columns.
• So it turns out leading principal minors are simpler to get. If we write Dk for the leading

principal minor of order k we find that:
• D1=a (we deleted the last two lines and column)
• D2=ae−bd (we removed the last line and the last column)
• D3=aei+bfg+cdh−ceg−bdi−afh

• Now that we can compute all the leading principal minors of a matrix, we can compute
them for the Hessian matrix at x∗ and if they are all positive, we will know that the matrix is
positive definite.

• We now have fully examined what we have to know, and you should be able to understand
how to solve an unconstrained minimization problem.



Unconstrained minimization

• Computing the leading principal
minors

• Example

• In this example we will try to
find the minimum of the
function:
f(x,y)=(2−x)2+100(y−x2)2

which is known as the
Rosenbrock's banana function.

The Rosenbrock function for a = 2 and b = 100



Computing the leading principal minors
Solution

1- search for which point it gradient 
equals zero:

2- compute the partial derivatives, and 
we find:



Computing
the leading
principal
minors



Computing
the leading
principal
minors



The hessian 
Matrix



The hessian 
Matrix



LOCAL minimum?
• A point is called a local minimum when it is the smallest value within a range. More

formally:
• Given a function f defined on a domain X, a point x∗ is said to be a local

minimum if there exists some ϵ>0 such that f(x∗)≤f(x) for all x in X within
distance ϵ of x∗.

• This is illustrated in the figure below:



GLOBAL minimum

• A global minimum, however, is true for the whole domain of the
function:

• Given a function f defined on a domain X, a point x∗ is said to be
a global minimum if f(x∗)≤f(x) for all x in X

• So all our hard work was just to find a local minimum, but in real life, we
often want to find the global minimum.



How can we find a GLOBAL minimum

• There is one simple way to find the global minimum:

1. Find all the local minima

2. Take the smallest one; it is the global minimum.

• Another approach is to study the function we are trying to minimize. If
this function is convex, then we are sure its local minimum is a global
minimum.

• Theorem: A local minimum of a convex function is a global minimum



Convex functions
• What is a convex function?

• A function is convex if you can
trace a line between two of its
points without crossing the
function line.

A convex function



Non convex functions

• Non convex functions
• However, if you cross the

function line, then the
function is non-convex.

• As you can see in the figure
below, the red line crosses
the function, which means it
is non-convex. Note,
however, that the function is
convex on some intervals, for
instance on [-1,+1].

A non-convex function



Unconstrained minimization

• As often, there is also an
"opposite" concept: a function f
is concave if −f is convex.

• The problem here is that the
original definition of a convex
function is also true, we can
trace a line between two points
of the function without crossing
the line... A concave function



Convex Functions

• So the mathematicians have been a little bit more specific, and they say
that:

• A function is convex if its epigraph (the set of points on or above
the graph of the function) is a convex set.

• But what is a convex set?

• In Euclidean space, a convex set is the region such that, for every
pair of points within the region, every point on the straight line
segment that joins the pair of points is also within the region.



Convex Functions
•By using the same logic as before. A set of points is 

convex if when we pick two points belonging to the set 
and we trace a line between them then the line is inside 
the set.. 

Which set is convex and which set is not convex?



Convex Functions
• If you guessed right, the circle and the triangles are convex sets. In the figure 

below I traced a red line between two points. As you can see, the line joining 
two points of the star leave the figure indicating that it is not a convex set.

The star is not a convex set



Convex Functions

• We can now use this knowledge to determine if a function is convex.

• Step 1: We have a function and we wish to know if it is convex

• Step 2: We take its epigraph (think of it as filling it with water but the water
cannot overflow so it adds up vertically when it reaches the limits of the
function)

• Step 3: If the shape of the epigraph is convex, then it is a convex function!



Convex Functions
• How do we know if a function is convex?

• The definition with the epigraph is simple to understand, but with
functions with several variables it is kind of hard to visualize. So we need
to study the function:

• More generally, a continuous, twice differentiable function of
several variables is convex on a convex set if and only if its Hessian
matrix is positive semidefinite on the interior of the convex set.

• If we want to check if a function is convex, one easy way is to use our old
friend the Hessian matrix. However, instead of checking if it is positive
definite, this time, we need to check if it is positive semidefinite.



Convex Functions

• What is the difference?
• Theorem:
• The following statements are equivalent:

• The symmetric matrix A is positive semidefinite.
• All eigenvalues of A are non-negative.
• All the principal minors of A are nonnegative.
• There exists B such that A=B⊺B

• As before we will use the minors. The difference here is that we need to check all the
principal minors, not only the leading principal minors. Moreover, they need to be
nonnegative. (A number is positive if it is greater than zero. A number is non-
negative if it is greater than or equal to zero).



Convex Functions
• Example: is the banana function convex?

• We saw that the Hessian of our banana function was:

• Its principal minors of rang 1 are:

• If the function is convex, these minors should be nonnegative on the interior of the
convex set. Which convex set? By definition, the domain of a convex function is a convex
set. In our case when we say that a function is convex on a convex set, we are talking
about its domain.

• The restriction "on the interior" tells us that we should not pick points which are on the
border of the set.



Convex Functions

• In our example, the function is defined in R2 which is a convex set. So
we would need to prove that for any point we pick the principal minors
are nonnegative.

• We see that that minor M11 is always positive. However, we can easily
find a point for which M22 is negative. For instance for the point (1,4)
M22=−399.

• As a result, we can tell the banana function is not convex.



Why are convex functions so cool?
• First, we saw that the local minimum of a convex function is a global minimum. It is a

pretty good result to help us find a solution more quickly.

• Moreover, in general, convex optimization problems are easier to solve. Why? To get a
better idea let us look at some figures.

A convex surface

• Imagine that solving the optimization
problem is like throwing a marble onto a
surface. In the case of the convex surface,
like the one in the figure above, no
matter where you put the marble, it will
go directly to the center of the bowl
which is the minimum of the function.



Why are convex functions so cool?
• What if the surface is non-convex? Well as you can see throwing a marble randomly onto

the surface has very few chances of hitting the global minimum. Instead, it is likely that the
marble will fall into one of the many local minima. And when this is the case, what do you
do? Do you try to push the marble to get somewhere else? As you can see, the problem is
much more complicated.

• The marble analogy is interesting
because it is basically what does an
optimization algorithm called gradient
descent. Another way to solve an
optimization problem is to use the
well-known Newton's method.

A nonconvex surface



Convex Functions

• Why are convex functions so cool?
• In this part, we learned what a convex set is and how to tell if a

function is convex. Moreover, we saw a visual representation showing
us why convex optimization is usually much simpler than non-convex
optimization: because there are no local minima.

• Convexity is an important concept to understand when studying
optimization.



Ex.

• Convex or Not:

1

3

4

2



Q&A


