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Soft Margin SVM

Dealing with noisy data

The biggest issue with hard margin SVM is that it requires the data to be linearly separable.
Real-life data is often noisy. Even when the data is linearly separable, a lot of things can happen
before you feed it to your model. Maybe someone mistyped a value for an example, or maybe
the probe of a sensor returned a crazy value. In the presence of an outlier (a data point that
seems to be out of its group), there are two cases: the outlier can be closer to the other
examples than most of the examples of its class, thus reducing the margin, or it can be among
the other examples and break linear separability. Let us consider these two cases and see how
the hard margin SVM deals with them.
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Outlier reducing the margin

When the data is linearly separable, the hard margin classifier does not behave as we would
like in the presence of outliers.

Let us now consider our dataset with the addition of an outlier data point at (5, 7), as shown in
Figure 33.
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Figure 33: The dataset is still linearly separable with the outlier at (5, 7)

In this case, we can see that the margin is very narrow, and it seems that the outlier is the main
reason for this change. Intuitively, we can see that this hyperplane might not be the best at
separating the data, and that it will probably generalize poorly.
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Outlier breaking linear separability

Even worse, when the outlier breaks the linear separability, as the point (7, 8) does in Figure 34,
the classifier is incapable of finding a hyperplane. We are stuck because of a single data point.
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Figure 34: The outlier at (7, 8) breaks linear separability
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Soft margin to the rescue

Slack variables

In 1995, Vapnik and Cortes introduced a modified version of the original SVM that allows the
classifier to make some mistakes. The goal is now not to make zero classification mistakes, but
to make as few mistakes as possible.

To do so, they modified the constraints of the optimization problem by adding a variable {
(zeta). So the constraint:

yilw x;+b) =1
becomes:
Yiw xj+b) = 1-¢;
As a result, when minimizing the objective function, it is possible to satisfy the constraint even if

the example does not meet the original constraint (that is, it is too close from the hyperplane, or
it is not on the correct side of the hyperplane).
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The problem is that we could choose a huge value of ¢ for every example, and all the

constraints will be satisfied.
To avaid this, we need to modify the objective function to penalize the choice of a big 4i:

m

S I, 5
minimize —[|lw||“ + i

]wfb, ;z 2|| [l i; i
subjectto yi(w-x;+b) 21— foranyi=1,...,m

We take the sum of all individual ¢; and add it to the objective function. Adding such a penalty is
called regularization. As a result, the solution will be the hyperplane that maximizes the margin
while having the smallest error possible.

There is still a little problem. With this formulation, one can easily minimize the function by using
negative values of ¢i. We add the constraint {; = 0 to prevent this. Moreover, we would like to
keep some control over the soft margin. Maybe sometimes we want to use the hard margin—
after all, that is why we add the parameter C, which will help us to determine how important the
¢ should be (more on that later).
This leads us to the soft margin formulation:
l m
mi‘réill;l?;zc E“W”Z +C ; i

subjectto  yj(w-x;+b)=21-¢;
{20 foranyi=1,...,m
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As shown by (Vapnik V. N., 1998), using the same technique as for the separable case, we find
that we need to maximize the same Wolfe dual as before, under a slightly different
constraint:

m m

max1m17e Z a; - 3 Z Z @ Yy iXi - X
=1 j=1

subject to 0505 <C, foranyi=1,...,m

m
Z aiy; =0
i1

Here the constraint ; = 0 has been changed to become 0 < @; < C, This constraint is often
called the box constraint because the vector « is constrained to lie inside the box with side
length C in the positive orthant. Note that an orthant is the analog n-dimensional Euclidean
space of a quadrant in the plane (Cristianini & Shawe-Taylor, 2000). We will visualize the box
constraint in Figure 50 in the chapter about the SMO algorithm.

The optimization problem is also called 1-norm soft margin because we are minimizing the 1-
norm of the slack vector ¢.
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Understanding what C does

The parameter C gives you control of how the SVM will handle errors. Let us now examine how
changing its value will give different hyperplanes.

Figure 35 shows the linearly separable dataset we used throughout this book. On the left, we
can see that setting C to + inf gives us the same result as the hard margin classifier. However, if
we choose a smaller value for C like we did in the center, we can see that the hyperplane is
closer to some points than others. The hard margin constraint is violated for these examples.
Setting C = 0.01 increases this behavior as depicted on the right.

What happens if we choose a C very close to zero? Then there is basically no constraint
anymore, and we end up with a hyperplane not classifying anything.
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Figure 35: Effect of C=+Infinity, C=1, and C=0.01 on a linearly separable dataset
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It seems that when the data is linearly separable, sticking with a big C is the best choice. But
what if we have some noisy outlier? In this case, as we can see in Figure 36, using C = +c
gives us a very narrow margin. However, when we use C = 1, we end up with a hyperplane very
close to the one of the hard margin classifier without outlier. The only violated constraint is the
constraint of the outlier, and we are much more satisfied with this hyperplane. This time, setting
C =0.01 ends up violating the constraint of another example, which was not an outlier. This
value of C seems to give too much freedom to our soft margin classifier.
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Figure 36: Effect of C=+Infinity, C=1, and C=0.01 on a linearly separable dataset with an outlier
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Eventually, in the case where the outlier makes the data non-separable, we cannot use C = +o0
because there is no solution meeting all the hard margin constraints. Instead, we test several
values of C, and we see that the best hyperplane is achieved with C = 3. In fact, we get the
same hyperplane for all values of C greater than or equal to 3. That is because no matter how
hard we penalize it, it is necessary to violate the constraint of the outlier to be able to separate
the data. When we use a small C, as before, more constraints are violated.
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Figure 37: Effect of C=3, C=1, and C=0.01 on a non-separable dataset with an outlier

Rules of thumb:

A small C will give a wider margin, at the cost of some misclassifications.
¢ A huge C will give the hard margin classifier and tolerates zero constraint violation.
e The key is to find the value of C such that noisy data does not impact the solution too

much.
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How to find the best C?

There is no magic value for C that will work for all the problems. The recommended approach to
select C is to use grid search with cross-validation (Hsu, Chang, & Lin, A Practical Guide to
Support Vector Classification). The crucial thing to understand is that the value of C is very
specific to the data you are using, so if one day you found that C=0.001 did not work for one of
your problems, you should still try this value with another problem, because it will not have the
same effect.

Other soft-margin formulations

2-Norm soft margin

There is another formulation of the problem called the 2-norm (or L2 regularized) soft margin
in which we minimize 3/Iwll> + C Z 2. This formulation leads to a Wolfe dual problem without

the box constraint. For more |nformat|on about the 2-norm soft margin, refer to (Cristianini &
Shawe-Taylor, 2000).
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nu-SVM

Because the scale of C is affected by the feature space, another formulation of the problem has

been proposed: the vSVM. The idea is to use a parameter v whose value is varied between 0
and 1, instead of the parameter C.

Q Note: “v gives a more transparent parametrization of the problem, which does not

depend on the scaling of the feature space, but only on the noise level in the data.”
(Cristianini & Shawe-Taylor, 2000)

The optimization problem to solve is:
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Summary

The soft-margin SVM formulation is a nice improvement over the hard-margin classifier. It
allows us to classify data correctly even when there is noisy data that breaks linear separability.
However, the cost of this added flexibility is that we now have an hyperparameter C, for which
we need to find a value. We saw how changing the value of C' impacts the margin and allows
the classifier to make some mistakes in order to have a bigger margin. This once again reminds
us that our goal is to find a hypothesis that will work well on unseen data. A few mistakes on the
training data is not a bad thing if the model generalizes well in the end.
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