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Solving the Optimization Problem




Solving the Optimization Problem
Lagrange multipliers

The Italian-French mathematician Giuseppe Lodovico Lagrangia, also known as Joseph-
Louis Lagrange, invented a strategy for finding the local maxima and minima of a function
subject to equality constraint. It is called the method of Lagrange multipliers.

The method of Lagrange multipliers

Lagrange noticed that when we try to solve an optimization problem of the form:
mini{nizc f(x)
subjectto  g(x) =0

the minimum of / is found when its gradient point in the same direction as the gradient of 8.
In other words, when:

V/f(x) = aVg(x)
So if we want to find the minimum of / under the constraint &, we just need to solve for:

YV (x)—aVelx) =0



Solving the Optimization Problem
Here, the constant « is called a Lagrange multiplier.
To simplify the method, we observe that if we define a function £(%.a@) = f(X) - ag(x) then its
gradient is VL(x. @) = V/(x) - aVg(x) Ag a result, solving for VLix.@) = 0 allows us to find the
minimum.
The Lagrange multiplier method can be summarized by these three steps:

1. Comtmaltnugm function £ by introducing one multiplier per constraint

Lof

2. Get the gradient the Lagrangian
3. Solve for VLix.a) =0

?m SVM Lagrangian problem
We saw in the last chapter that the SVM optimization problem is:
minimize %lwﬂ:
b &
subjectto yw-x;+b) =120, i=1,....m



Solving the Optimization Problem

Let us return to this problem. We have one objective function to minimize:
. 1 >
flw) = =|lwl|®

and m constraint functions:
gilw,b) =y w-x;+b)=1,i=1,..., m

We introduce the Lagrangian function:

m
L(w,b,a) = f(W) - Zu,,q,-(w.b)
i=1

"

1 )
Liwba)= ;llw I© - Zu,lv,{w “Xj+b)-1

i=1

Note that we introduced one Lagrange multiplier @; for each constraint function.



Solving the Optimization Problem

We could try to solve for L(W.b.@) = 0 but the problem can only be solved analytically when the

number of examples is small (Tyson Smith, 2004). So we will once again rewrite the problem
using the duality principle.

To get the solution of the primal problem, we need to solve the following Lagrangian problem:
min max L(w,b,a)
w,b @
subjectto  a; 20, i=1

What is interesting here is that we need to minimize with respect to w and b, and to maximize
with respect to @ at the same time.

Tip: You may have noticed that the method of Lagrange multipliers is used for
solving problems with equality constraints, and here we are using them with
inequality constraints. This is because the method still works for inequality
constraints, provided some additional conditions (the KKT conditions) are met. We
will talk about these conditions later.



Solving the Optimization Problem
The Wolfe dual problem

The Lagrangian problem has m inequality constraints (where m is the number of training
examples) and is typically solved using its dual form. The duality principle tells us that an
optimization problem can be viewed from two perspectives. The first one is the primal problem,
a minimization problem in our case, and the other one is the dual problem, which will be a
maximization problem. What is interesting is that the maximum of the dual problem will always
be less than or equal to the minimum of the primal problem (we say it provides a Iowir bound to
the solution of the primal problem).

In our case, we are trying to solve a convex optimization problem, and Slater’s condition holds
for affine constraints (Gretton, 2016), so Slater's theorem tells us that strong duality holds.
This means that the maximum of the dual problem is equal to the minimum of the primal
problem. Solving the dual is the same thing as solving the primal, except it is easier.

Recall that the Lagrangian function is:

ailyiw-x; +b) - 1]

m
L(w,b,a) = —||w|| —Zn,[\,tw xi+b)-1]
=1
m
=1



Solving the Optimization Problem

The Lagrangian primal problem is:

min max L(w,b,a)
w.b (14

subjectto  a; 20, i=1,..., m

Solving the minimization problem involves taking the partial derivatives of L with respect to w
and b.

m
V\,L =W- Z(Y,‘\‘,‘X,’ =0
=1

m

oL
E — Z(l,_\‘,‘ =0

i=1

From the first equation, we find that:

m

W= Z a;viX;



Solving the Optimization Problem

Let us substitute w by this value into L :

l m m m
k Wi(a,b) = 3( Z«r,_\'ix,) s ( Z nj_\‘jxl.) - Z Q;

m

_\',‘((Z a;yjX;)-Xj+ b) -1 I

i=1 Jj=1 i=1 j=1
l m m m m m
= 5 Z Zu,-uj_\',;\'jx,- . Xj = Z ”'.‘\."((Z (r,;\',x,-) *X3 + b) + Z a;
“i=1 j=1 i=1 i=1 i=1
m m m m m m
=5 Z Z(r,n Vi jXi*Xj— Z Z"‘"I‘ VjXitXj— I)Zu,-'\',' + Zu,-
“i=l j= i=1 j= i=1 i=1
m m m

== Z Zn,n/\ iy jXi* Xj— IJZa,;\';

=1 “ i=l j=1 i=1



Solving the Optimization Problem
So we successfully removed w, but b is still used in the last term of the function:

m m m m

W(a,b) = Zer; Z Zl!;th\;\ jXi*Xj— bZ:r,-_\‘,-
i=1

“ =1 jum

We note that d]—‘: = ( implies that 'Z| a;y; =0 As a result, the last term is equal to zero, and we
[ I=

can write:
m m m
Wia) = Z a; Z Z @@ jviyiX; - X;j
i-l J=1
This is the Wolfe dual Lagrangian function.
The optimization problem is now called the Wolfe dual problem:

m m m

|
max:}muc Z a; - > E Z iy X X
i=1 ~i=l j=1
subjectto a; 20, foranyi=1,..., m

m

Dayi=0

i=1



Solving the Optimization Problem

Traditionally the Wolfe dual Lagrangian problem is constrained by the gradients being equal to

zero. In theory, we should add the constraints Vw£ =0 and ,—,,4, 0. However, we only added

the latter. Indeed, we added Z a;y; = 0 because it is necessary for removing b from the function.
i=1
m

However, we can solve the problem without the constraint ¥ = ',ZI XYiXi |

The main advantage of the Wolfe dual problem over the Lagrangian problem is that the
objective function W now depends only on the Lagrange multipliers. Moreover, this formulation
will help us solve the problem in Python in the next section and will be very helpful when we
define kernels later.



Solving the Optimization Problem
Karush-Kuhn-Tucker conditions

Because we are dealing with inequality constraints, there is an additional requirement: the
solution must also satisfy the Karush-Kuhn-Tucker (KKT) conditions.

The KKT conditions are first-order necessary conditions for a solution of an optimization
problem to be optimal. Moreover, the problem should satisfy some regularity conditions. Luckily
for us, one of the regularity conditions is Slater’s condition, and we just saw that it holds for
SVMs. Because the primal problem we are trying to solve is a convex problem, the KKT
conditions are also sufficient for the point to be primal and dual optimal, and there is zero
duality gap.

CJ Note: “[...]Solving the SVM problem is equivalent to finding a solution to the KKT
conditions.” (Burges, 1988)



Solving the Optimization Problem

Rk Tosum up, if a solution satisfies the KKT conditions, we are guaranteed that it is the

optimal solution.

The Karush-Kuhn-Tucker conditions are:

Stationarity condition:
Vul=w- Z apyix; =0

i=1

m

oL
01_’ ==- Z:r‘_\‘,- =0

Primal feasibility condition:

L
yilw-x;+b)=120 foralli=1,..
o Dual feasibility condition:
] foralli=1,..., m
« Complementary slackness condition:

ajlyiw-x;j+b)=1]=0

foralli=1,...,

«sM

m



Solving the Optimization Problem

Stationarity condition

The stationarity condition tells us that the selected point must be a stationary point. It is a point
where the function stops increasing or decreasing. When there is no constraint, the stationarity

condition is just the point where the gradient of the objective function is zero. When we have
constraints, we use the gradient of the Lagrangian.

Primal feasibility condition

Looking at this condition, you should recognize the constraints of the primal problem. It makes
sense that they must be enforced to find the minimum of the function under constraints.

Dual feasibility condition

Similarly, this condition represents the constraints that must be respected for the dual problem.
Complementary slackness condition

From the complementary slackness condition, we see that either @; =0 or yi(w - x; +b) -1 =0,
Support vectors are examples having a positive Lagrange multiplier. They are the ones for

which the constraint yi(w - x; + b) = 1 = 0 is active. (We say the constraint is active when
Yilw-x; +b)-1=0),



Solving the Optimization Problem
What to do once we have the multipliers?

When we solve the Wolfe dual problem, we get a vector o containing all Lagrange multipliers.
However, when we first stated the primal problem, our goal was to find w and b. Let us see how
we can retrieve these values from the Lagrange multipliers.

Compute w

Computing w is pretty simple since we derived the formula: w = £|uiv,l.ftwhwv-£

Compute b
Once we have w, we can use one of the constraints of the primal problem to compute b:

yiw-x;+b)~=120

Indeed, this constraint is still true because we transformed the original problem in such a way
that the new formulations are equivalent. What it says is that the closest points to the
hyperpiane will have a functional margin of 1 (the value 1 is the value we chose when we
decided how to scale w):

yiw -x; 4+ b) = |



Solving the Optimization Problem

From there, as we know all other variables, it is easy to come up with the value of b. We muitiply
both sides of the equation by y; , and because ¥; = |, it gives us:

w-x;j+b=y;

b=yj-w-x;
However, as indicated in Pattern Recognition and Machine Leamning (Bishop, 2006), instead of
taking a random support vector X; , taking the average provides us with a numerically more

stable solution:
1 3
b= 3 zl(_\'i - W-X;)
i=

where S is the number of support vectors.

Other authors, such as (Cristianini & Shawe-Taylor, 2000) and (Ng), use another formula:

maxy, .| (W« X;) + miny | (W-X;)
b

They basically take the average of the nearest positive support vector and the nearest negative
support vector. This latest formula is the one originally used by Statistical Learning Theory
(Vapnik V. N., 1998) when defining the optimal hyperplane.



Hypothesis function

The SVMs use the same hypothesis function as the Perceptron. The class of an example Xi is
given by:

h(x;) = sign(w - X; + b)

When using the dual formulation, it is computed using only the support vectors:

S
h(x;) = sign( Z a;yj(X;-X;) + b)
j=1



Solving the Optimization Problem
Solving SVMs with a QP solver

A QP solver is a program used to solve quadratic programming problems. In the following
example, we will use the Python package called CVXOPT.

This package provides a method that is able to solve quadratic problems of the form:

. o . 1 T T
Illllll:llll(‘ E.l Px+ q X
subjectto Gx<h

Ax=b

It does not look like our optimization problem, so we will need to rewrite it so that we can solve it
with this package.

First, we note that in the case of the Wolfe dual optimization problem, what we are trying to
minimize is «, so we can rewrite the quadratic problem with « instead of x to better see how the
two problems relate:

ygiia |
mimmize ;urPu + ([T(I
X 2
subjectto Ga <h
Aa=b

Here the < symbol represents component-wise vector inequalities. It means that each row of the
matrix GA represents an inequality that must be satisfied.



We will change the Wolfe dual problem. First, we transform the maximization problem
m m

Z ‘n,-_\',-ij, . xl + Z a;

J=1 i=1

ranyi=1,...,m

- |
maximize - -
@ 2

_M=

subjectto  a; = 0, for
m

Z"l."i =0
i=1
into a minimization problem by multiplying by -1.
L |
mm::’mzc 5

Yy iXi - X;— Z",
=1

,SO, foranyi=1,...,

m
Z a;yi =0
i=1

_'M=

subject to



Then we introduce vectors @ = (@1.....am)" and¥ = 1.+ .ym)” and the Gram matrix K of all

possible dot products of vectors X;:

XX X|1-'Xx2
X2-X] X2-X2
K(Xjsse0s Xm) = . .
* Xm*X] Xm- X2

X1 Xm
X2 Xm

Xm * Xm

We use them to construct a vectorized version of the Wolfe dual problem where YY 4 denotes the

outer product of ¥.

vy i 1
minimize ;uT(nyK)ur -
« 2

subjectto  —a <0,
y-a=0

We are now able to find out the value for each of the parameters P, ¢, G, h, A, and b required by

the CVXOPT gp function.



Solving the Optimizationw Problem

When we plot the result in Figure 32, we see that the hyperplane is the optimal hyperplane.
Contrary to the Perceptron, the SVM will always return the same resuilt.

2
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Figure 32: The hyperplane found with CVXOPT

This formulation of the SVM is called the hard margin SVM. It cannot work when the data is not
linearly separable. There are several Support Vector Machines formulations. In the next
chapter, we will consider another formulation called the soft margin SVM, which will be able to
work when data is non-linearly separable because of outliers.



Summary

Minimizing the norm of w is a convex optimization problem, which can be solved using the
Lagrange multipliers method. When there are more than a few examples, we prefer using
convex optimization packages, which will do all the hard work for us.

We saw that the original optimization problem can be rewritten using a Lagrangian function.
Then, thanks to duality theory, we transformed the Lagrangian problem into the Wolfe dual
problem. We eventually used the package CVXOPT to solve the Wolfe dual.
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