
Database System Concepts and Architecture-I

Outlines

• Data Models and Their Categories

• History of Data Models

• Schemas, Instances, and States

• Three-Schema Architecture

• Data Independence

• DBMS Languages and Interfaces

• Database System Utilities and Tools

Data Model

One fundamental characteristic of the database approach is that it provides some level of data

abstraction. Data abstraction generally refers to the suppression of details of data organization and

storage, and the highlighting of the essential features for an improved understanding of data. One of the

main characteristics of the database approach is to support data abstraction so that different users can

perceive data at their preferred level of detail. A data model—a collection of concepts that can be used

to describe the structure of a database—provides the necessary means to achieve this abstraction.2 By

structure of a database we mean the data types, relationships, and constraints that apply to the data.

Most data models also include a set of basic operations for specifying retrievals and updates on the

database. In addition to the basic operations provided by the data model, it is becoming more common to

include concepts in the data model to specify the dynamic aspect or behavior of a database application.

This allows the database designer to specify a set of valid user-defined operations that are allowed on the

database objects.3 An example of a user-defined operation could be COMPUTE_GPA, which can be applied to a

STUDENT object. On the other hand, generic operations to insert, delete, modify, or retrieve any kind of object

are often included in the basic data model operations. Concepts to specify behavior are fundamental to object-

oriented data models (see Chapter 12) but are also being incorporated in more traditional data models. For

example, object-relational models (see Chapter 12) extend the basic relational model to include such concepts,

among others. In the basic relational data model, there is a provision to attach behavior to the relations in the

form of persistent stored modules, popularly known as stored procedures (see Chapter 10).

Categories of Data Models

Many data models have been proposed, which we can categorize according to the types of concepts they use

to describe the database structure. High-level or conceptual data models provide concepts that are

close to the way many users perceive data, whereas low-level or physical data models provide concepts

that describe the details of how data is stored on the computer storage media, typically magnetic disks.
Concepts provided by physical data models are generally meant for computer specialists, not for end users.

Between these two extremes is a class of representational (or implementation) data models,4 which

provide concepts that may be easily understood by end users but that are not too far removed from the way
data is organized in computer storage. Representational data models hide many details of data
storage on disk but can be implemented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships. An entity represents

a real-world object or concept, such as an employee or a project from the miniworld that is described in

the database. An attribute represents some property of interest that further describes an entity, such

as the employee’s name or salary. A relationship among two or more entities represents an association

among the entities, for example, a works-on relationship between an employee and a project. Chapter 3

presents the entity–relationship model—a popular high-level conceptual data model. Chapter 4

describes additional abstractions used for advanced modeling, such as generalization, specialization, and

categories (union types). Representational or implementation data models are the models used most

frequently in traditional commercial DBMSs. These include the widely used relational data model, as

well as the so-called legacy data models—the network and hierarchical models—that have been

widely used in the past. Part 3 of the text is devoted to the relational data model, and its constraints,

operations, and languages. The SQL standard for relational databases is described in Chapters 6 and 7.

Representational data models represent data by using record structures and hence are sometimes called

record-based data models. We can regard the object data model as an example of a new family

of higher-level implementation data models that are closer to conceptual data models. A standard for

object databases called the ODMG object model has been proposed by the Object Data Management

Group (ODMG). We describe the general characteristics of object databases and the object model

proposed standard in Chapter 12. Object data models are also frequently utilized as high-level conceptual

models, particularly in the software engineering domain. Another class of data models is known as self-

describing data models. The data storage in systems based on these models combines the description

of the data with the data values themselves. In traditional DBMSs, the description (schema) is separated

from the data. These models include XML (see Chapter 12) as well as many of the key-value stores

and NOSQL systems (see Chapter 24) that were recently created for managing big data.

Schemas, Instances, and Database State

In a data model, it is important to distinguish between the description of the database and the database

itself. The description of a database is called the database schema, which is specified during database

design and is not expected to change frequently. Most data models have certain conventions for

displaying schemas as diagrams. A displayed schema is called a schema diagram. Figure 2.1 shows a

schema diagram for the database shown in Figure 1.2; the diagram displays the structure of each record

type but not the actual instances of records. We call each object in the schema—such as STUDENT or

COURSE—a schema construct.

A schema diagram displays only some aspects of a schema, such as the names of record types and data

items, and some types of constraints. Other aspects are not specified in the schema diagram; for example,

Figure 2.1 shows neither the data type of each data item nor the relationships among the various files.

Many types of constraints are not represented in schema diagrams. A constraint such as students majoring

in computer science must take CS1310 before the end of their sophomore year is quite difficult to represent

diagrammatically.

The actual data in a database may change quite frequently. For example, the database shown in Figure 1.2
changes every time we add a new student or enter a new grade. The data in the database at a particular

moment in time is called a database state or snapshot. It is also called the current set of occurrences

or instances in the database. In a given database state, each schema construct has its own current set of

instances; for example, the STUDENT construct will contain the set of individual student entities (records) as its
instances. Many database states can be constructed to correspond to a particular database schema. Every time
we insert or delete a record or change the value of a data item in a record, we change one state
of the database into another state.

The distinction between database schema and database state is very important. When we define a new

database, we specify its database schema only to the DBMS. At this point, the corresponding database state is

the empty state with no data. We get the initial state of the database when the database is first populated

or loaded with the initial data. From then on, every time an update operation is applied to the database, we

get another database state. At any point in time, the database has a current state.8 The DBMS is partly

responsible for ensuring that every state of the database is a valid state—that is, a state that satisfies the

structure and constraints specified in the schema. Hence, specifying a correct schema to the DBMS is extremely
important and the schema must be designed with utmost care. The DBMS stores the descriptions of the schema

constructs and constraints—also called the meta-data—in the DBMS catalog so that DBMS software can refer

to the schema whenever it needs to. The schema is sometimes called the intension, and a database state is

called an extension of the schema.

Three-Schema Architecture and Data Independence
The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate the user applications from
the physical database. In this architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical storage structure of the

database. The internal schema uses a physical data model and describes the complete details of data storage
and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole database

for a community of users. The conceptual schema hides the details of physical storage structures and
concentrates on describing entities, data types, relationships, user operations, and constraints. Usually, a
representational data model is used to describe the conceptual schema when a database system is
implemented. This implementation conceptual schema is often based on a conceptual schema design in a high-
level data model.

3. The external or view level includes a number of external schemas or user views. Each external

schema describes the part of the database that a particular user group is interested in and hides the rest of the
database from that user group. As in the previous level, each external schema is typically implemented
using a representational data model, possibly based on an external schema design in a high-level conceptual
data model.
The three-schema architecture is a convenient tool with which the user can visualize the schema levels in a
database system. Most DBMSs do not separate the three levels completely and explicitly, but they support the
three-schema architecture to some extent. Some older DBMSs may include physical-level details in the
conceptual schema. The three-level ANSI architecture has an important place in database technology
development because it clearly separates the users’ external level, the database’s conceptual level, and the
internal storage level for designing a database. It is very much applicable in the design of DBMSs, even today.
In most DBMSs that support user views, external schemas are specified in the same data model that
describes the conceptual-level information (for example, a relational DBMS like Oracle or SQLServer uses SQL
for this).
Notice that the three schemas are only descriptions of data; the actual data is stored at the physical level only.
In the three-schema architecture, each user group refers to its own external schema. Hence, the DBMS must
transform a request specified on an external schema into a request against the conceptual schema, and then
int a request on the internal schema for processing over the stored database. If the
request is a database retrieval, the data extracted from the stored database must be reformatted to match the

user’s external view. The processes of transforming requests and results between levels are called mappings.

These mappings may be time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, it is necessary

to transform requests between the conceptual and internal levels.

Data Independence

The three-schema architecture can be used to further explain the concept of data independence, which

can be defined as the capacity to change the schema at one level of a database system without having to
change the schema at the next higher level. We can define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema without having to change

external schemas or application programs. We may change the conceptual schema to expand the database (by
adding a record type or data item), to change constraints, or to reduce the database (by removing a record
type or data item). In the last case, external schemas that refer only to the remaining data should not be
affected. For example, the external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one shown in Figure 1.6(a). Only the view
definition and the mappings need to be changed in a DBMS that supports logical data independence. After the
conceptual schema undergoes a logical reorganization, application programs that reference the external
schema constructs must work as before. Changes to constraints can be applied to the conceptual schema
without affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema without having to change

the conceptual schema. Hence, the external schemas need not be changed as well. Changes to the internal
schema may be needed because some physical files were reorganized—for example, by creating additional
access structures—to improve the performance of retrieval or update. If the same data as before remains in
the database, we should not have to change the conceptual schema. For example, providing an access path to
improve retrieval speed of SECTION records (Figure 1.2) by semester and year should not require a query such
as list all sections offered in fall 2008 to be changed, although the query would be executed more efficiently by
the DBMS by utilizing the new access path. Generally, physical data independence exists in most databases and
file environments where physical details, such as the exact location of data on disk, and hardware details of
storage encoding, placement, compression, splitting, merging of records, and so on are hidden from the user.
Applications remain unaware of these details. On the other hand, logical data independence is harder to
achieve because it allows structural and constraint changes without affecting application programs—a much
stricter requirement.
Whenever we have a multiple-level DBMS, its catalog must be expanded to include information on how to map
requests and data among the various levels. The DBMS uses additional software to accomplish these mappings
by referring to the mapping information in the catalog. Data independence occurs because when the schema
is changed at some level, the schema at the next higher level remains unchanged; only the mapping between
the two levels is changed. Hence, application programs referring to the higher-level schema need not be
changed.

Database Languages and Interfaces
Once the design of a database is completed and a DBMS is chosen to implement the database, the first

step is to specify conceptual and internal schemas for the database and any mappings between the two.

In many DBMSs where no strict separation of levels is maintained, one language, called the data

definition language (DDL), is used by the DBA and by database designers to define both schemas.

The DBMS will have a DDL compiler whose function is to process DDL statements in order to identify

descriptions of the schema constructs and to store the schema description in the DBMS catalog. Once the

database schemas are compiled and the database is populated with data, users must have some means

to manipulate the database. Typical manipulations include retrieval, insertion, deletion, and modification

of the data. The DBMS provides a set of operations or a language called the data manipulation

language (DML) for these purposes.

There are two main types of DMLs. A high-level or nonprocedural DML can be used on its own to

specify complex database operations concisely. Many DBMSs allow high-level DML statements either to

be entered interactively from a display monitor or terminal or to be embedded in a general-purpose

programming language. In the latter case, DML statements must be identified within the program so that

they can be extracted by a precompiler and processed by the DBMS. A lowlevel or procedural DML

must be embedded in a general-purpose programming language. This type of DML typically retrieves

individual records or objects from the database and processes each separately. Therefore, it needs to use

programming language constructs, such as looping, to retrieve and process each record from a set of

records. Low-level DMLs are also called record-at-a-time DMLs because of this property. High-level

DMLs, such as SQL, can specify and retrieve many records in a single DML statement; therefore, they are

called set-at-a-time or set-oriented DMLs. A query in a high-level DML often specifies which data to

retrieve rather than how to retrieve it; therefore, such languages are also called declarative. Whenever

DML commands, whether high level or low level, are embedded in a general-purpose programming

language, that language is called the host language and the DML is called the data sublanguage.10

On the other hand, a high-level DML used in a standalone interactive manner is called a query language.

In general, both retrieval and update commands of a high-level DML may be used interactively and are

hence considered part of the query language.11 Casual end users typically use a high-level query language

to specify their requests, whereas programmers use the DML in its embedded form. For naive and

parametric users, there usually are user-friendly interfaces for interacting with the database; these

can also be used by casual users or others who do not want to learn the details of a high-level query

language. We discuss these types of interfaces next.

Data Definition Language (DDL):

A high-level or nonprocedural DML can be used on its own to specify complex database operations

concisely. Many DBMSs allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming language.
In the latter case, DML statements must be identified within the program so that they can be extracted by a

precompiler and processed by the DBMS

Data Manipulation Language (DML):

A lowlevel or procedural DML must be embedded in a general-purpose programming language. This

type of DML typically retrieves individual records or objects from the database and processes each

separately. Therefore, it needs to use programming language constructs, such as looping, to retrieve and

process each record from a set of records. Low-level DMLs are also called record-at-a-time DMLs

because of this property. High-level DMLs, such as SQL, can specify and retrieve many records in a single

DML statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in a high-

level DML often specifies which data to retrieve rather than how to retrieve it; therefore, such languages

are also called declarative. DBMS Interfaces Whenever DML commands, whether high level or low level,

are embedded in a general-purpose programming language, that language is called the host language

and the DML is called the data sublanguage. On the other hand, a high-level DML used in a standalone

interactive manner is called a query language. In general, both retrieval and update commands of a

high-level DML may be used interactively and are hence considered part of the query language. Casual

end users typically use a high-level query language to specify their requests, whereas programmers use

the DML in its embedded form. For naive and parametric users, there usually are user-friendly

interfaces for interacting with the database; these can also be used by casual users or others who do

not want to learn the details of a high-level query language. We discuss these types of interfaces next.

DBMS Interfaces
Whenever DML commands, whether high level or low level, are embedded in a general-purpose

programming language, that language is called the host language and the DML is called the data

sublanguage. On the other hand, a high-level DML used in a standalone interactive manner is called a

query language. In general, both retrieval and update commands of a high-level DML may be used

interactively and are hence considered part of the query language.

Casual end users typically use a high-level query language to specify their requests, whereas programmers

use the DML in its embedded form. For naive and parametric users, there usually are user-friendly

interfaces for interacting with the database; these can also be used by casual users or others who do

not want to learn the details of a high-level query language. We discuss these types of interfaces in coming

subsections.

Programmer interfaces
Programmer interfaces for embedding DML in a programming languages:

• Embedded Approach: e.g embedded SQL (for C, C++, etc.), SQLJ (for Java)

• Procedure Call Approach: e.g. JDBC for Java, ODBC (Open Databse Connectivity) for other

programming languages as API’s (application programming interfaces)

• Database Programming Language Approach: e.g. ORACLE has PL/SQL, a programming language

based on SQL; language incorporates SQL and its data types as integral components

• Scripting Languages: PHP (client-side scripting) and Python (server-side scripting) are used to write

database programs.

User-friendly interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing. These interfaces present the user with lists of

options (called menus) that lead the user through the formulation of a request. Menus do away with

the need to memorize the specific commands and syntax of a query language; rather, the query is

composed step-by-step

by picking options from a menu that is displayed by the system. Pull-down menus are a very popular

technique in Web-based user interfaces. They are also often used in browsing interfaces, which

allow a user to look through the contents of a database in an exploratory and unstructured manner.

Apps for Mobile Devices. These interfaces present mobile users with access to their data. For example,

banking, reservations, and insurance companies, among many others, provide apps that allow users to

access their data through a mobile phone or mobile device. The apps have built-in programmed interfaces

that typically allow users to login using their account name and password; the apps then provide a limited

menu of options for mobile access to the user data, as well as options such as paying bills (for banks) or

making reservations (for reservation Web sites).

Forms-based Interfaces. A forms-based interface displays a form to each user. Users can fill out all of the

form entries to insert new data, or they can fill out only certain entries, in which case the DBMS will

retrieve matching data for the remaining entries. Forms are usually designed and programmed for naive

users as interfaces to canned transactions. Many DBMSs have forms specification languages, which

are special languages that help programmers specify such forms. SQL*Forms is a form-based language

that specifies queries using a form designed in conjunction with the relational database schema. Oracle

Forms is a component of the Oracle product suite that provides an extensive set of features to design and

build applications using forms. Some systems have utilities that define a form by letting the end user

interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in diagrammatic form. The user

then can specify a query by manipulating the diagram. In many cases, GUIs utilize both menus and forms.

Other DBMS Interfaces
1- Natural Language Interfaces. These interfaces accept requests written in English or some other

language and attempt to understand them. A natural language interface usually has its own schema,
which is similar to the database conceptual schema, as well as a dictionary of important words. The
natural language interface refers to the words in its schema, as well as to the set of standard words
in its dictionary, that are used to interpret the request. If the interpretation is successful, the
interface generates a high-level query corresponding to the natural language request and submits it
to the DBMS for processing; otherwise, a dialogue is started with the user to clarify the request.

2- Keyword-based Database Search. These are somewhat similar to Web search engines, which accept
strings of natural language (like English or Spanish) words and match them with documents at
specific sites (for local search engines) or Web pages on the Web at large (for engines like Google or
Ask). They use predefined indexes on words and use ranking functions to retrieve and present
resulting documents in a decreasing degree of match. Such “free form” textual query interfaces are

not yet common in structured relational databases, although a research area called keyword-

based querying has emerged recently for relational databases.

3- Speech Input and Output. Limited use of speech as an input query and speech as an answer to a
question or result of a request is becoming commonplace. Applications with limited vocabularies,
such as inquiries for telephone directory, flight arrival/departure, and credit card account
information, are allowing speech for input and output to enable customers to access this
information. The speech input is detected using a library of predefined words and used to set up the
parameters that are supplied to the queries. For output, a similar conversion from text or numbers
into speech takes place.

4- Interfaces for Parametric Users. Parametric users, such as bank tellers, often have a small set of
operations that they must perform repeatedly. For example, a teller is able to use single function
keys to invoke routine and repetitive transactions such as account deposits or withdrawals, or
balance inquiries. Systems analysts and programmers design and implement a special interface for

each known class of naive users. Usually a small set of abbreviated commands is included, with the
goal of minimizing the number of keystrokes required for each request.

5- Interfaces for the DBA. Most database systems contain privileged commands that can be used only
by the DBA staff. These include commands for creating accounts, setting system parameters,
granting account authorization, changing a schema, and reorganizing the storage structures of a
database.

Mobile Interfaces

These interfaces present mobile users with access to their data. For example, banking, reservations, and

insurance companies, among many others, provide apps that allow users to access their data through a

mobile phone or mobile device. The apps have built-in programmed interfaces that typically allow users

to login using their account name and password; the apps then provide a limited menu of options for

mobile access to the user data, as well as options such as paying bills (for banks) or making reservations

(for reservation Web sites).

Database System Utilities

In addition to possessing the software modules just described, most DBMSs have database utilities

that help the DBA manage the database system. Common utilities have the following types of functions:

■ Loading. A loading utility is used to load existing data files—such as text files or sequential files—into

the database. Usually, the current (source) format of the data file and the desired (target) database file

structure are specified to the utility, which then automatically reformats the data and stores it in the

database. With the proliferation of DBMSs, transferring data from one DBMS to another is becoming

common in many organizations. Some vendors offer conversion tools that generate the appropriate

loading programs, given the existing source and target database storage descriptions (internal schemas).

■ Backup. A backup utility creates a backup copy of the database, usually by dumping the entire

database onto tape or other mass storage medium. The backup copy can be used to restore the database

in case of catastrophic disk failure. Incremental backups are also often used, where only changes since

the previous backup are recorded. Incremental backup is more complex, but saves storage space.

■ Database storage reorganization. This utility can be used to reorganize a set of database files into

different file organizations and create new access paths to improve performance.

■ Performance monitoring. Such a utility monitors database usage and provides statistics to the DBA.

The DBA uses the statistics in making decisions such as whether or not to reorganize files or whether to

add or drop indexes to improve performance. Other utilities may be available for sorting files, handling

data compression, monitoring access by users, interfacing with the network, and performing other

functions.

Tools, Application Environments, and Communications Facilities
Other tools are often available to database designers, users, and the DBMS. CASE tools12 are used in the

design phase of database systems. Another tool that can be quite useful in large organizations is an

expanded data dictionary (or data repository) system. In addition to storing catalog information

about schemas and constraints, the data dictionary stores other information, such as design decisions,

usage standards, application program descriptions, and user information. Such a system is also called an

information repository. This information can be accessed directly by users or the DBA when needed.

A data dictionary utility is similar to the DBMS catalog, but it includes a wider variety of information and

is accessed mainly by users rather than by the DBMS software.

Application development environments, such as PowerBuilder (Sybase) or JBuilder (Borland), have

been quite popular. These systems provide an environment for developing database applications and

include facilities that help in many facets of database systems, including database design, GUI

development, querying

and updating, and application program development. The DBMS also needs to interface with

communications software, whose function is to allow users at locations remote from the database

system site to access the database through computer terminals, workstations, or personal computers.

These

are connected to the database site through data communications hardware such as Internet routers,

phone lines, long-haul networks, local networks, or satellite communication devices. Many commercial

database systems have communication packages that work with the DBMS. The integrated DBMS and

data communications system is called a DB/DC system. In addition, some distributed DBMSs are

physically distributed over multiple machines. In this case, communications networks are needed to

connect the machines. These are often local area networks (LANs), but they can also be other types

of networks.

