
Database System Concepts and Architecture-II

Outlines

• The Database System Environment

• Database System Utilities and Tools

Database System Environment

Database System environment discusses the types of software components that constitute a DBMS and

the types of computer system software with which the DBMS interacts.

DBMS Component Modules

Figure 2.1 illustrates, in a simplified form, the typical DBMS components. The figure is divided into two

parts. The top part of the figure refers to the various users of the database environment and their

interfaces. The lower part shows the internal modules of the DBMS responsible for storage of data and

processing of transactions.

The database and the DBMS catalog are usually stored on disk. Access to the disk is controlled primarily

by the operating system (OS), which schedules disk read/write. Many DBMSs have their own buffer

management module to schedule disk read/write, because management of buffer storage has a

considerable effect on performance. Reducing disk read/write improves performance considerably.

A higher-level stored data manager module of the DBMS controls access to DBMS information that is

stored on disk, whether it is part of the database or the catalog. Let us consider the top part of Figure 2.1

first. It shows interfaces for the DBA staff, casual users who work with interactive interfaces to formulate

queries, application programmers who create programs using some host programming languages, and

parametric users who do data entry work by supplying parameters to predefined transactions. The DBA

staff works on defining the database and tuning it by making changes to its definition using the DDL and

other privileged commands. The DDL compiler processes schema definitions, specified in the DDL, and

stores descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes information

such as the names and sizes of files, names and data types of data items, storage details of each file,

mapping information among schemas, and constraints.

In addition, the catalog stores many other types of information that are needed by the DBMS modules,

which can then look up the catalog information as needed. Casual users and persons with occasional need

for information from the database interact using the interactive query interface in Figure 2.3. We have

not explicitly shown any menu-based or form-based or mobile interactions that are typically used to

generate the interactive query automatically or to access canned transactions. These queries are parsed

and validated for correctness of the query syntax, the names of files and data elements, and so on by a

query compiler that compiles them into an internal form. This internal query is subjected to query

optimization (discussed in Chapters 18 and 19). Among other things, the query optimizer is concerned

with the rearrangement and possible reordering of operations, elimination of redundancies, and use of

efficient search algorithms during execution. It consults the system catalog for statistical and other

physical information about the stored data and generates executable code that performs the necessary

operations for the query and makes calls on the runtime processor.

Figure 2.1: Component modules of a DBMS and their interactions.

Application programmers write programs in host languages such as Java, C, or C++ that are submitted to

a precompiler. The precompiler extracts DML commands from an application program written in a host

programming language. These commands are sent to the DML compiler for compilation into object code

for database access. The rest of the program is sent to the host language compiler. The object codes for

the DML commands and the rest of the program are linked, forming a canned transaction whose

executable code includes calls to the runtime database processor. It is also becoming increasingly

common to use scripting languages such as PHP and Python to write database programs. Canned

transactions are executed repeatedly by parametric users via PCs or mobile apps; these users simply

supply the parameters to the transactions. Each execution is considered to be a separate transaction. An

example is a bank payment transaction where the account number, payee, and amount may be supplied

as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the privileged

commands, (2) the executable query plans, and (3) the canned transactions with runtime parameters. It

works with the system catalog and may update it with statistics. It also works with the stored data

manager, which in turn uses basic operating system services for carrying out low-level input/output

(read/write) operations between the disk and main memory. The runtime database processor handles

other aspects of data transfer, such as management of buffers in the main memory. Some DBMSs have

their own buffer management module whereas others depend on the OS for buffer management. We

have shown concurrency control

and backup and recovery systems separately as a module in this figure. They are integrated into the

working of the runtime database processor for purposes of transaction management. It is common to

have the client program that accesses the DBMS running on a separate computer or device from the

computer on which the database resides. The former is called the client computer running DBMS client

software and the latter is called the database server. In many cases, the client accesses a middle

computer, called the application server, which in turn accesses the database server. We elaborate on

this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical DBMS modules. The DBMS

interacts with the operating system when disk accesses—to the database or to the catalog—are needed.

If the computer system is shared by many users, the OS will schedule DBMS disk access requests and

DBMS processing along with other processes. On the other hand, if the computer system is mainly

dedicated to running the database server, the DBMS will control main memory buffering of disk pages.

The DBMS also interfaces with compilers for general purpose host programming languages, and with

application servers and client programs running on separate machines through the system network

interface.

Centralized and Client-Server DBMS Architectures

First, we discuss client/server architecture in general; then we discuss how it is applied to DBMSs. The

client/server architecture was developed to deal with computing environments in which a large

number of PCs, workstations, file servers, printers, database servers, Web servers, e-mail servers, and

other software and equipment are connected via a network. The idea is to define specialized servers

with specific functionalities. For example, it is possible to connect a number of PCs or small workstations

as clients to a file server that maintains the files of the client machines. Another machine can be

designated as a printer server by being connected to various printers; all print requests by the clients

are forwarded to this machine. Web servers or e-mail servers also fall into the specialized server

category. The resources provided by specialized servers can be accessed by many client machines. The

client machines provide the user with the appropriate interfaces to utilize these servers, as well as

with local processing power to run local applications. This concept can be carried over to other software

packages, with specialized programs—such as a CAD (computer-aided design) package—being stored on

specific server machines and being made accessible to multiple clients. Figure 2.5 illustrates client/server

architecture at the logical level; Figure 2.6 is a simplified diagram that shows the physical architecture.

Some machines would be client sites only (for example, mobile devices or workstations/PCs that have

only client software installed). Other machines would be dedicated servers, and others would have both

client and server functionality.

The concept of client/server architecture assumes an underlying framework that consists of many

PCs/workstations and mobile devices as well as a smaller number of server machines, connected via

wireless networks or LANs and other types of computer networks. A client in this framework is typically

a user machine that provides user interface capabilities and local processing. When a client requires access

to additional functionality—such as database access—that does not exist at the client, it connects to a

server that provides the needed functionality. A server is a system containing both hardware and

software that can provide services to the client machines, such as file access, printing, archiving, or

database access. In general, some machines install only client software, others only server software, and

still others may include both client and server software, as illustrated in Figure 2.6. However, it is more

common that client and server software usually run on separate machines. Two main types of basic DBMS

architectures were created on this underlying client/server framework: two-tier and three-tier.13 We

discuss them next.

A Physical Centralized Architecture Basic 2-tier Client-Server Architectures

In relational database management systems (RDBMSs), many of which started as centralized systems, the

system components that were first moved to the client side were the user interface and application

programs. Because SQL (see Chapters 6 and 7) provided a standard language for RDBMSs, this created a

logical dividing point between client and server. Hence, the query and transaction functionality related to

SQL processing remained on the server side. In such an architecture, the server is often called a query

server or transaction server because it provides these two functionalities. In an RDBMS, the server is

also often called an SQL server.

Two Tier Client-Server Architecture

The user interface programs and application programs can run on the client side. When DBMS access is

required, the program establishes a connection to the DBMS (which is on the server side); once the

connection is created, the client program can communicate with the DBMS. A standard called Open

Database Connectivity (ODBC) provides an application programming interface (API), which

allows client-side programs to call the DBMS, as long as both client and server machines have the

necessary software installed. Most DBMS vendors provide ODBC drivers for their systems. A client

program can actually connect to several RDBMSs and send query and transaction requests using the ODBC

API, which are then processed at the server sites. Any query results are sent back to the client program,

which can process and display the results as needed. A related standard for the Java programming

language, called JDBC, has also been defined. This allows Java client programs to access one or more

DBMSs through a standard interface.

The architectures described here are called two-tier architectures because the software components

are distributed over two systems: client and server. The advantages of this architecture are its simplicity

and seamless compatibility with existing systems. The emergence of the Web changed the roles of clients

and servers, leading to the three-tier architecture.

Three Tier Client-Server Architecture

Many Web applications use an architecture called the three-tier architecture,

which adds an intermediate layer between the client and the database server, as
illustrated in Figure 2.7(a).

This intermediate layer or middle tier is called the application server or the Web server, depending

on the application. This server plays an intermediary role by running application programs and storing

business rules (procedures or constraints) that are used to access data from the database server. It can

also improve database security by checking a client’s credentials before forwarding a request to the

database server. Clients contain user interfaces and Web browsers. The intermediate server accepts

requests from the client, processes the request and sends database queries and commands to the

database server, and then acts as a conduit for passing (partially) processed data from the database server

to the clients, where it may be processed further and filtered to be presented to the users. Thus, the user

interface, application rules, and data access act as the three tiers. Figure 2.7(b) shows another view of the

three-tier architecture used by database and other application package vendors. The presentation layer

displays information to the user and allows data entry. The business logic layer handles intermediate rules

and constraints before data is passed up to the user or down to the DBMS. The bottom layer includes all

data management services. The middle layer can also act as a Web server, which retrieves query results

from the database server and formats them into dynamic Web pages that are viewed by the Web browser

at the client side. The client machine is typically a PC or mobile device connected to the Web. Other

architectures have also been proposed. It is possible to divide the layers between the user and the stored

data further into finer components, thereby giving rise to n-tier architectures, where n may be four or five

tiers. Typically, the business logic layer is divided into multiple layers. Besides distributing programming

and data throughout a network, n-tier applications afford the advantage that any one tier can run on an

appropriate processor or operating system platform and can be handled independently. Vendors of ERP

(enterprise resource planning) and CRM (customer relationship management) packages often use a

middleware layer, which accounts for the front-end modules (clients) communicating with a number of

back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensitive data from server to

client in encrypted form, where it will be decrypted. The latter can be done by the hardware or by

advanced software. This technology gives higher levels of data security, but the network security issues

remain a major concern. Various technologies for data compression also help to transfer large amounts

of data from servers to clients over wired and wireless networks.

Classification of DBMSs

Several criteria can be used to classify DBMSs. The first is the data model on which the DBMS is based.

The main data model used in many current commercial DBMSs is the relational data model, and the

systems based on this model are known as SQL systems. The object data model has been

implemented in some commercial systems but has not had widespread use. Recently, so-called big data

systems, also known as key-value storage systems and NOSQL systems, use various data

models: document-based, graph-based, column-based, and key-value data models. Many

legacy applications still run on database systems based on the hierarchical and network data

models. The relational DBMSs are evolving continuously, and, in particular, have been incorporating

many of the concepts that were developed in object databases. This has led to a new class of DBMSs called

object-relational DBMSs. We can categorize DBMSs based on the data model: relational, object,

object-relational, NOSQL, key-value, hierarchical, network, and other. Some experimental DBMSs are

based on the XML (eXtended Markup Language) model, which is a tree-structured data model. These

have been called native XML DBMSs. Several commercial relational DBMSs have added XML

interfaces and storage to their products.

The second criterion used to classify DBMSs is the number of users supported by the system. Single-

user systems support only one user at a time and are mostly used with PCs. Multiuser systems,

which include the majority of DBMSs, support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A DBMS is

centralized if the data is stored at a single computer site. A centralized DBMS can support multiple

users, but the DBMS and the database reside totally at a single computer site. A distributed DBMS

(DDBMS) can have the actual database and DBMS software distributed over many sites connected by a

computer network.

Big data systems are often massively distributed, with hundreds of sites. The data is often replicated on

multiple sites so that failure of a site will not make some data unavailable.

Homogeneous DDBMSs use the same DBMS software at all the sites, whereas heterogeneous

DDBMSs can use different DBMS software at each site. It is also possible to develop middleware

software to access several autonomous preexisting databases stored under heterogeneous DBMSs. This

leads to a federated DBMS (or multi database system), in which the participating DBMSs are loosely

coupled and

have a degree of local autonomy. Many DDBMSs use client-server architecture, as we described in Section

2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based on cost. Today we

have open source (free) DBMS products like MySQL and PostgreSQL that are supported by third-party

vendors with additional services. The main RDBMS products are available as free examination 30-day copy

versions

as well as personal versions, which may cost under $100 and allow a fair amount of functionality. The

giant systems are being sold in modular form with components to handle distribution, replication, parallel

processing, mobile capability, and so on, and with a large number of parameters that must be defined for

the configuration.

Furthermore, they are sold in the form of licenses—site licenses allow unlimited use of the database

system with any number of copies running at the customer site. Another type of license limits the number

of concurrent users or the number of user seats at a location. Standalone single-user versions of some

systems like Microsoft Access are sold per copy or included in the overall configuration of a desktop or

laptop. In addition, data warehousing and mining features, as well as support for additional data types,

are made available at extra cost. It is possible to pay millions of dollars for the installation and

maintenance of large database systems annually.

We can also classify a DBMS on the basis of the types of access path options for storing files. One

well-known family of DBMSs is based on inverted file structures.

Finally, a DBMS can be general purpose or special purpose. When performance is a primary

consideration, a special-purpose DBMS can be designed and built for a specific application; such a system

cannot be used for other applications without major changes. Many airline reservations and telephone

directory systems developed in the past are special-purpose DBMSs. These fall into the category of online

transaction processing (OLTP) systems, which must support a large number of concurrent

transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data model. The relational data

model represents a database as a collection of tables, where each table can be stored as a separate file.

The database in Figure 1.2 resembles a basic relational representation. Most relational databases use the

high-level query language called SQL and support a limited form of user views. We discuss the relational

model and its languages and operations in Chapters 5 through 8, and techniques for programming

relational applications in Chapters 10 and 11.

The object data model defines a database in terms of objects, their properties, and their operations.

Objects with the same structure and behavior belong to a class, and classes are organized into

hierarchies (or acyclic graphs). The operations of each class are specified in terms of predefined

procedures called methods. Relational DBMSs have been extending their models to incorporate object

database concepts and other capabilities; these systems are referred to as object-relational or

extended relational systems. We discuss object databases and object-relational systems in Chapter

12. Big data systems are based on various data models, with the following four data models most

common. The key-value data model associates a unique key with each value (which can be a record

or object) and provides very fast access to a value given its key. The document data model is based

on JSON (Java Script Object Notation) and stores the data as documents, which somewhat resemble

complex objects. The graph data model stores objects as graph nodes and relationships among objects

as directed graph edges. Finally, the column-based data models store the columns of rows clustered

on disk pages for fast access and allow multiple versions of the data. We will discuss some of these in

more detail in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and has been used as a

basis for implementing several prototype native XML systems. XML uses hierarchical tree structures. It

combines database concepts with concepts from document representation models. Data is represented

as elements; with the use of tags, data can be nested to create complex tree structures. This model

conceptually resembles the object model but uses different terminology. XML capabilities have been

added to many commercial DBMS products. We present an overview of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models, are the network

and hierarchical models. The network model represents data as record types and also represents a

limited type of 1:N relationship, called a set type.

A 1:N, or one-to-many, relationship relates one instance of a record to many record instances using some

pointer linking mechanism in these models. The network model, also known as the CODASYL DBTG

model,14 has an associated record-ata-time language that must be embedded in a host programming

language. The network DML was proposed in the 1971 Database Task Group (DBTG) Report as an

extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierarchy represents a

number of related records. There is no standard language for the hierarchical model. A popular

hierarchical DML is DL/1 of the IMS system. It dominated the DBMS market for over 20 years between

1965 and 1985. Its DML, called DL/1, was a de facto industry standard for a long time.15

Variations of Distributed DBMSs (DDBMSs)

Homogeneous DDBMSs use the same DBMS software at all the sites, whereas

heterogeneous DDBMSs can use different DBMS software at each site. It is also

possible to develop middleware software to access several autonomous preexisting

databases stored under heterogeneous DBMSs. This leads to a federated DBMS (or

multidatabase system), in which the participating DBMSs are loosely coupled and

have a degree of local autonomy. Many DDBMSs use client-server architecture, as
we described in Section 2.5.

Cost considerations for DBMSs

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based on cost. Today we

have open source (free) DBMS products like MySQL and PostgreSQL that are supported by third-party

vendors with additional services. The main RDBMS products are available as free examination 30-day copy

versions as well as personal versions, which may cost under $100 and allow a fair amount of functionality.

The giant systems are being sold in modular form with components to handle distribution, replication,

parallel processing, mobile capability, and so on, and with a large number of parameters that must be

defined for the configuration. Furthermore, they are sold in the form of licenses—site licenses allow

unlimited use of the database system with any number of copies running at the customer site. Another

type of license limits the number of concurrent users or the number of user seats at a location. Standalone

single-user versions of some systems like Microsoft Access are sold per copy or included in the overall

configuration of a desktop or laptop. In addition, data warehousing and mining features, as well as support

for additional data types, are made available at extra cost. It is possible to pay millions of dollars for the

installation and maintenance of large database systems annually.

Other Considerations

We can also classify a DBMS on the basis of the types of access path options for storing files. One

well-known family of DBMSs is based on inverted file structures. Finally, a DBMS can be general

purpose or special purpose. When performance is a primary consideration, a special-purpose DBMS

can be designed and built for a specific application; such a system cannot be used for other applications

without major changes. Many airline reservations and telephone directory systems developed in the past

are special-purpose DBMSs. These fall into the category of online transaction processing (OLTP)

systems, which must support a large number of concurrent transactions without imposing excessive

delays.

History of Data Models

Two older, historically important data models, now known as legacy data models, are the network and

hierarchical models.

1- Network Models

The network model represents data as record types and also represents a limited type of 1:N

relationship, called a set type. A 1:N, or one-to-many, relationship relates one instance of a record to

many record instances using some pointer linking mechanism in these models. The network model, also
known as the CODASYL DBTG model,14 has an associated record-ata-time language that must be
embedded in a host programming language. The network DML was proposed in the 1971 Database Task
Group (DBTG) Report as an extension of the COBOL language.

2- Hierarchical Model

The hierarchical model represents data as hierarchical tree structures. Each hierarchy represents

a number of related records. There is no standard language for the hierarchical model. A popular
hierarchical DML is DL/1 of the IMS system. It dominated the DBMS market for over 20 years between
1965 and 1985. Its DML, called DL/1, was a de facto industry standard for a long time.15

3- Relational Model

The relational data model represents a database as a collection of tables, where each table can

be stored as a separate file. The database in Figure 1.2 resembles a basic relational representation. Most
relational databases use the high-level query language called SQL and support a limited form of user
views. We discuss the relational model and its languages and operations in Chapters 5 through 8, and
techniques for programming relational applications in Chapters 10 and 11.

4- Object-oriented Data Models
The object data model defines a database in terms of objects, their properties, and their operations.

Objects with the same structure and behavior belong to a class, and classes are organized into
hierarchies (or acyclic graphs). The operations of each class are specified in terms of predefined

procedures called methods. Relational DBMSs have been extending their models to incorporate object

database concepts and other capabilities; these systems are referred to as object-relational or

extended relational systems. We discuss object databases and object-relational systems in Chapter

12.

